Liu He, Liu Yang, Chen Guohao, Meng Yuan, Peng Hao, Miao Jingsheng, Yang Chuluo
National Key Laboratory of Green and Long-Life Road Engineering in Extreme Environment (Shenzhen), Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University 518055 Shenzhen P. R. China
Chem Sci. 2024 Jul 3;15(31):12598-12605. doi: 10.1039/d4sc03111c. eCollection 2024 Aug 7.
Exploring strategies to enhance reverse intersystem crossing (RISC) is of great significance to develop efficient thermally activated delayed fluorescent (TADF) molecules. In this study, we investigate the substantial impact of nonplanar structure on improving the rate of RISC ( ). Three emitters based on spiroacridine donors are developed to evaluate this hypothesis. All molecules exhibit high photoluminescent quantum yields (PLQYs) of 96-98% due to their rigid donor and acceptor. Leveraging the synergistic effects of heavy element effect and nonplanar geometry, S2-TRZ exhibits an accelerated of 24.2 × 10 s compared to the 11.1 × 10 s of S1-TRZ, which solely incorporates heavy atoms. Additionally, O1-TRZ possesses a further lower of 9.42 × 10 s because of the absence of these effects. Remarkably, owing to the high PLQYs and suitable TADF behaviors, devices based on these emitters exhibit state-of-the-art performance, including a maximum external quantum efficiency of up to 40.1% and maximum current efficiency of 124.7 cd A. More importantly, devices utilizing S2-TRZ as an emitter achieve a relieved efficiency roll-off of only 7% under 1000 cd m, in contrast to the 12% for O1-TRZ and 11% for S1-TRZ, respectively. These findings advance our fundamental understanding of TADF processes for high-performance electroluminescent devices.
探索增强反向系间窜越(RISC)的策略对于开发高效热激活延迟荧光(TADF)分子具有重要意义。在本研究中,我们研究了非平面结构对提高RISC速率的重大影响( )。基于螺吖啶供体开发了三种发光体来评估这一假设。由于其刚性供体和受体,所有分子均表现出96 - 98%的高光致发光量子产率(PLQYs)。利用重元素效应和非平面几何结构的协同效应,与仅包含重原子的S1 - TRZ的11.1×10⁶ s相比,S2 - TRZ的RISC速率加快至24.2×10⁶ s。此外,由于缺乏这些效应,O1 - TRZ的RISC速率进一步降低至9.42×10⁶ s。值得注意的是,由于高PLQYs和合适的TADF行为,基于这些发光体的器件表现出了最先进的性能,包括高达40.1%的最大外量子效率和124.7 cd A的最大电流效率。更重要的是,以S2 - TRZ作为发光体的器件在1000 cd/m²下的效率滚降仅为7%,相比之下,O1 - TRZ和S1 - TRZ分别为12%和11%。这些发现推进了我们对高性能电致发光器件TADF过程的基本理解。