MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK.
Edinburgh Cancer Research, CRUK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XU, UK.
Sci Adv. 2024 Aug 9;10(32):eado0636. doi: 10.1126/sciadv.ado0636.
Ubiquitination is a crucial posttranslational modification required for the proper repair of DNA double-strand breaks (DSBs) induced by ionizing radiation (IR). DSBs are mainly repaired through homologous recombination (HR) when template DNA is present and nonhomologous end joining (NHEJ) in its absence. In addition, microhomology-mediated end joining (MMEJ) and single-strand annealing (SSA) provide backup DSBs repair pathways. However, the mechanisms controlling their use remain poorly understood. By using a high-resolution CRISPR screen of the ubiquitin system after IR, we systematically uncover genes required for cell survival and elucidate a critical role of the E3 ubiquitin ligase SCF in cell cycle-dependent DSB repair. We show that SCF-mediated EXO1 degradation prevents DNA end resection in mitosis, allowing MMEJ to take place. Moreover, we identify a conserved cyclin F recognition motif, distinct from the one used by other cyclins, with broad implications in cyclin specificity for cell cycle control.
泛素化是 DNA 双链断裂 (DSBs) 正确修复所必需的一种关键的翻译后修饰,这种修复是由电离辐射 (IR) 诱导的。当存在模板 DNA 时,DSBs 主要通过同源重组 (HR) 进行修复,而在不存在模板 DNA 时则通过非同源末端连接 (NHEJ) 进行修复。此外,微同源介导的末端连接 (MMEJ) 和单链退火 (SSA) 为 DSBs 修复途径提供了后备方案。然而,控制这些途径使用的机制仍知之甚少。通过在 IR 后使用高分辨率的 CRISPR 筛选泛素系统,我们系统地揭示了细胞存活所必需的基因,并阐明了 E3 泛素连接酶 SCF 在细胞周期依赖性 DSB 修复中的关键作用。我们表明,SCF 介导的 EXO1 降解可防止有丝分裂中 DNA 末端切除,从而允许 MMEJ 发生。此外,我们鉴定出一个保守的 cyclin F 识别基序,与其他 cyclin 使用的基序不同,这对 cyclin 特异性在细胞周期控制中具有广泛的影响。