Lorè Nunzio, Heydari Babak
Multi-Agent Intelligent Complex Systems (MAGICS) Lab, Network Science Institute, Northeastern University, Boston, MA, USA.
Multi-Agent Intelligent Complex Systems (MAGICS) Lab, College of Engineering and Network Science Institute, Northeastern University, Boston, MA, USA.
Sci Rep. 2024 Aug 9;14(1):18490. doi: 10.1038/s41598-024-69032-z.
This paper investigates the strategic behavior of large language models (LLMs) across various game-theoretic settings, scrutinizing the interplay between game structure and contextual framing in decision-making. We focus our analysis on three advanced LLMs-GPT-3.5, GPT-4, and LLaMa-2-and how they navigate both the intrinsic aspects of different games and the nuances of their surrounding contexts. Our results highlight discernible patterns in each model's strategic approach. GPT-3.5 shows significant sensitivity to context but lags in its capacity for abstract strategic decision making. Conversely, both GPT-4 and LLaMa-2 demonstrate a more balanced sensitivity to game structures and contexts, albeit with crucial differences. Specifically, GPT-4 prioritizes the internal mechanics of the game over its contextual backdrop but does so with only a coarse differentiation among game types. In contrast, LLaMa-2 reflects a more granular understanding of individual game structures, while also giving due weight to contextual elements. This suggests that LLaMa-2 is better equipped to navigate the subtleties of different strategic scenarios while also incorporating context into its decision-making, whereas GPT-4 adopts a more generalized, structure-centric strategy.
本文研究了大语言模型(LLMs)在各种博弈论场景中的策略行为,审视了决策过程中博弈结构与情境框架之间的相互作用。我们将分析重点放在三个先进的大语言模型——GPT-3.5、GPT-4和LLaMa-2上,以及它们如何应对不同博弈的内在方面及其周围环境的细微差别。我们的研究结果突出了每个模型策略方法中可辨别的模式。GPT-3.5对情境表现出显著的敏感性,但其抽象战略决策能力滞后。相反,GPT-4和LLaMa-2对博弈结构和情境都表现出更平衡的敏感性,尽管存在关键差异。具体而言,GPT-4将博弈的内部机制置于情境背景之上,但在不同博弈类型之间的区分较为粗略。相比之下,LLaMa-2对个体博弈结构有更细致的理解,同时也充分考虑了情境因素。这表明LLaMa-2更有能力应对不同战略场景的微妙之处,同时将情境纳入其决策过程,而GPT-4则采用了更通用的、以结构为中心的策略。