Suppr超能文献

革新安全信息与事件管理(SIEM)安全:一种用于多层攻击检测的创新关联引擎设计。

Revolutionizing SIEM Security: An Innovative Correlation Engine Design for Multi-Layered Attack Detection.

作者信息

Sheeraz Muhammad, Durad Muhammad Hanif, Paracha Muhammad Arsalan, Mohsin Syed Muhammad, Kazmi Sadia Nishat, Maple Carsten

机构信息

Department of Computer and Information Sciences, Pakistan Institute of Engineering and Applied Sciences, Islamabad 45650, Pakistan.

Department of Computer Science, COMSATS University Islamabad, Islamabad 45550, Pakistan.

出版信息

Sensors (Basel). 2024 Jul 28;24(15):4901. doi: 10.3390/s24154901.

Abstract

Advances in connectivity, communication, computation, and algorithms are driving a revolution that will bring economic and social benefits through smart technologies of the Industry 4.0 era. At the same time, attackers are targeting this expanded cyberspace to exploit it. Therefore, many cyberattacks are reported each year at an increasing rate. Traditional security devices such as firewalls, intrusion detection systems (IDSs), intrusion prevention systems (IPSs), anti-viruses, and the like, often cannot detect sophisticated cyberattacks. The security information and event management (SIEM) system has proven to be a very effective security tool for detecting and mitigating such cyberattacks. A SIEM system provides a holistic view of the security status of a corporate network by analyzing log data from various network devices. The correlation engine is the most important module of the SIEM system. In this study, we propose the optimized correlator (OC), a novel correlation engine that replaces the traditional regex matching sub-module with a novel high-performance multiple regex matching library called "Hyperscan" for parallel log data scanning to improve the performance of the SIEM system. Log files of 102 MB, 256 MB, 512 MB, and 1024 MB, generated from log data received from various devices in the network, are input into the OC and simple event correlator (SEC) for applying correlation rules. The results indicate that OC is 21 times faster than SEC in real-time response and 2.5 times more efficient in execution time. Furthermore, OC can detect multi-layered attacks successfully.

摘要

连接性、通信、计算和算法方面的进步正在推动一场革命,这场革命将通过工业4.0时代的智能技术带来经济和社会效益。与此同时,攻击者正将目标对准这片扩展的网络空间以加以利用。因此,每年都会有越来越多的网络攻击被报告。诸如防火墙、入侵检测系统(IDS)、入侵防御系统(IPS)、杀毒软件等传统安全设备,往往无法检测出复杂的网络攻击。安全信息和事件管理(SIEM)系统已被证明是检测和缓解此类网络攻击的非常有效的安全工具。SIEM系统通过分析来自各种网络设备的日志数据,提供企业网络安全状态的整体视图。关联引擎是SIEM系统最重要的模块。在本研究中,我们提出了优化关联器(OC),这是一种新颖的关联引擎,它用一个名为“Hyperscan”的新型高性能多正则表达式匹配库取代了传统的正则表达式匹配子模块,用于并行日志数据扫描,以提高SIEM系统的性能。将从网络中各种设备接收到的日志数据生成的102MB、256MB、512MB和1024MB的日志文件输入到OC和简单事件关联器(SEC)中,以应用关联规则。结果表明,OC在实时响应方面比SEC快21倍,在执行时间方面效率高2.5倍。此外,OC能够成功检测多层攻击。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e517/11314677/c5aca4957117/sensors-24-04901-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验