Suppr超能文献

iScore、ASTRAL 评分、DRAGON 评分和 THRIVE 评分的外部验证,以及建立列线图预测大血管闭塞性急性缺血性卒中患者结局的研究。

External validation of the iScore, ASTRAL score, DRAGON score, and THRIVE score and development of a nomogram to predict outcome in patients with large vessel occlusion-acute ischemic stroke.

机构信息

Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225001, China; Department of Neurology, Northern Jiangsu People' s Hospital, Yangzhou, 225001, China.

Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225001, China; The Yangzhou School of Clinical Medicine of Dalian Medical University, Yangzhou, 225001, China.

出版信息

J Stroke Cerebrovasc Dis. 2024 Oct;33(10):107919. doi: 10.1016/j.jstrokecerebrovasdis.2024.107919. Epub 2024 Aug 8.

Abstract

OBJECTIVE

This study aimed to validate the iScore, ASTRAL score, DRAGON score, and THRIVE score for assessing large vessel occlusion-acute ischemic stroke (AIS-LVO) and establish a predictive model for AIS-LVO patients that has better performance to guide clinical practice.

METHODS

We retrospectively included 439 patients with AIS-LVO and collected baseline data from all of them. External validation of the iScore, ASTRAL score, DRAGON score, and THRIVE score was performed. All variables were compared between groups via univariate analysis, and the results are expressed as ORs and 95 % CIs. Independent variables with P < 0.25 were included in the multivariate logistic analysis, and statistically significant differences (P < 0.05) were identified as risk factors for prognosis in AIS-LVO patients. Receiver operating characteristic (ROC) curve analysis and decision curve analysis (DCA) were used to evaluate the predictive value of our model.

RESULTS

Our external validation resulted in an iScore under the curve (AUC) of 0.8475, an ASTRAL AUC of 0.8324, a DRAGON AUC of 0.8196, and a THRIVE AUC of 0.8039. In our research, multivariate Cox regression revealed 8 independent predictors. We used a nomogram to visualize the results of the data analysis. The AUC for the training cohort was 0.8855 (95 % CI, 0.8487-0.9222), and that in the validation cohort was 0.8992 (95 % CI, 0.8496-0. 9488).

CONCLUSIONS

In this study, we verified that the above scores have excellent efficacy in predicting the prognosis of AIS-LVO patients. The nomogram we developed was able to predict the prognosis of AIS-LVO more accurately and may contribute to personalized clinical decision-making and treatment for future clinical work.

摘要

目的

本研究旨在验证 iScore、ASTRAL 评分、DRAGON 评分和 THRIVE 评分在评估急性缺血性脑卒中(AIS-LVO)大血管闭塞中的有效性,并建立一种对 AIS-LVO 患者具有更好预测性能的预测模型,以指导临床实践。

方法

我们回顾性纳入 439 例 AIS-LVO 患者,收集所有患者的基线数据。对 iScore、ASTRAL 评分、DRAGON 评分和 THRIVE 评分进行外部验证。通过单因素分析比较各组间的所有变量,结果表示为 OR 和 95%CI。将 P<0.25 的独立变量纳入多因素 logistic 分析,并确定统计学差异(P<0.05)为 AIS-LVO 患者预后的危险因素。使用受试者工作特征(ROC)曲线分析和决策曲线分析(DCA)评估模型的预测价值。

结果

我们的外部验证结果显示 iScore 的曲线下面积(AUC)为 0.8475,ASTRAL AUC 为 0.8324,DRAGON AUC 为 0.8196,THRIVE AUC 为 0.8039。在我们的研究中,多因素 Cox 回归揭示了 8 个独立的预测因素。我们使用列线图可视化数据分析结果。训练队列的 AUC 为 0.8855(95%CI,0.8487-0.9222),验证队列的 AUC 为 0.8992(95%CI,0.8496-0.9488)。

结论

在本研究中,我们验证了上述评分在预测 AIS-LVO 患者预后方面具有优异的疗效。我们开发的列线图能够更准确地预测 AIS-LVO 的预后,可能有助于未来临床工作中的个性化临床决策和治疗。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验