Suppr超能文献

识别与PAN细胞焦亡相关的亚组并预测特征以评估胆管癌患者的预后和免疫格局。

Identification of PANoptosis-relevant subgroups and predicting signature to evaluate the prognosis and immune landscape of patients with biliary tract cancer.

作者信息

Liu Dongming, Chen Wenshuai, Han Zhiqiang, Wang Yu, Liu Wei, Ling Aomei, Wu Qiang, Li Huikai, Guo Hua

机构信息

Department of Hepatobiliary Cancer, Liver Cancer Research Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China.

National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.

出版信息

Hepatol Int. 2024 Dec;18(6):1792-1803. doi: 10.1007/s12072-024-10718-x. Epub 2024 Aug 10.

Abstract

BACKGROUND

This study conducted molecular subtyping of biliary tract cancer patients based on 19 PANoptosis-related gene signatures.

METHODS

Through consensus clustering, patients were categorized into two subtypes, A and B. By integrating multi-omics data and clinical information from different cohorts, we elucidated the association between different subtypes of biliary tract cancer and patient prognosis, which correlated with the immune infiltration characteristics of patients.

RESULTS

LASSO regression analysis was performed on the 19 gene signatures, and we constructed and validated a 9-gene risk score prognostic model that accurately predicts the overall survival rate of different biliary tract cancer patients. Additionally, we developed a predictive nomogram demonstrating the clinical utility and robustness of our model. Further analysis of the risk score-based immune landscape highlighted potential associations with immune cell infiltration, chemotherapy, and immune therapy response.

CONCLUSION

Our study provides valuable insights into personalized treatment strategies for biliary tract cancer, which are crucial for improving patient prognosis and guiding treatment decisions in clinical practice.

摘要

背景

本研究基于19个全程序性坏死相关基因特征对胆管癌患者进行分子分型。

方法

通过一致性聚类,将患者分为A和B两种亚型。通过整合来自不同队列的多组学数据和临床信息,我们阐明了胆管癌不同亚型与患者预后之间的关联,这与患者的免疫浸润特征相关。

结果

对19个基因特征进行了LASSO回归分析,我们构建并验证了一个9基因风险评分预后模型,该模型能够准确预测不同胆管癌患者的总生存率。此外,我们开发了一个预测列线图,证明了我们模型的临床实用性和稳健性。基于风险评分的免疫图谱的进一步分析突出了与免疫细胞浸润、化疗和免疫治疗反应的潜在关联。

结论

我们的研究为胆管癌的个性化治疗策略提供了有价值的见解,这对于改善患者预后和指导临床实践中的治疗决策至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c0e8/11632078/0f47197d68dd/12072_2024_10718_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验