Department of Pharmacy, the Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong 515041, China; Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong 515041, China.
Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong 515041, China.
Toxicology. 2024 Nov;508:153916. doi: 10.1016/j.tox.2024.153916. Epub 2024 Aug 12.
The human Ether-à-go-go-Related Gene (hERG) encodes a protein responsible for forming the alpha subunit of the IKr channel, which plays a crucial role in cardiac repolarization. The proper functioning of hERG channels is paramount in maintaining a normal cardiac rhythm. Inhibition of these channels can result in the prolongation of the QT interval and potentially life-threatening arrhythmias. Cardiotoxicity is a primary concern in the field of drug development. N-n-Butyl haloperidol iodide (F2), a derivative of haloperidol, has been investigated for its therapeutic potential. However, the impact of this compound on cardiac toxicity, specifically on hERG channels, remains uncertain. This study employs computational and experimental methodologies to examine the inhibitory mechanisms of F2 on hERG channels. Molecular docking and molecular dynamics simulations commonly used techniques in computational biology to predict protein-ligand complexes' binding interactions and stability. In the context of the F2-hERG complex, these methods can provide valuable insights into the potential binding modes and strength of interaction between F2 and the hERG protein. On the other hand, electrophysiological assays are experimental techniques used to characterize the extent and nature of hERG channel inhibition caused by various compounds. By measuring the electrical activity of the hERG channel in response to different stimuli, these assays can provide important information about the functional effects of ligand binding to the channel. The study's key findings indicate that F2 interacts with the hERG channel by forming hydrogen bonding, π-cation interactions, and hydrophobic forces. This interaction leads to the inhibition of hERG currents in a concentration-dependent manner, with an IC of 3.75 μM. The results presented in this study demonstrate the potential cardiotoxicity of F2 and underscore the significance of considering hERG channel interactions during its clinical development. This study aims to provide comprehensive insights into the interaction between F2 and hERG, which will may guid us in the safe use of F2 and in the development of new derivatives with high efficiency while low toxicity.
人类 Ether-à-go-go 相关基因(hERG)编码一种负责形成 IKr 通道的 α 亚基的蛋白质,该通道在心脏复极化中起着至关重要的作用。hERG 通道的正常功能对于维持正常的心脏节律至关重要。这些通道的抑制会导致 QT 间期延长,并可能导致危及生命的心律失常。心脏毒性是药物开发领域的主要关注点。N-正丁基卤化氢(F2),一种卤化氢的衍生物,因其治疗潜力而受到研究。然而,这种化合物对心脏毒性,特别是对 hERG 通道的影响尚不确定。本研究采用计算和实验方法研究 F2 对 hERG 通道的抑制机制。分子对接和分子动力学模拟是计算生物学中常用的技术,用于预测蛋白质-配体复合物的结合相互作用和稳定性。在 F2-hERG 复合物的情况下,这些方法可以提供关于 F2 与 hERG 蛋白之间潜在结合模式和相互作用强度的有价值的见解。另一方面,电生理测定是用于描述各种化合物引起的 hERG 通道抑制程度和性质的实验技术。通过测量 hERG 通道对不同刺激的电活性,这些测定可以提供关于配体与通道结合的功能影响的重要信息。研究的主要发现表明,F2 通过形成氢键、π-阳离子相互作用和疏水相互作用与 hERG 通道相互作用。这种相互作用导致 hERG 电流以浓度依赖的方式被抑制,IC 为 3.75 μM。本研究的结果表明 F2 具有潜在的心脏毒性,并强调在其临床开发过程中考虑 hERG 通道相互作用的重要性。本研究旨在提供对 F2 与 hERG 相互作用的全面了解,这将有助于我们安全使用 F2,并开发具有高效低毒性的新衍生物。