Suppr超能文献

Aliphatic and polycyclic aromatic compounds in coal and coal-based solid wastes: Relationship with coal-forming paleoenvironment and implications for environmental pollution.

作者信息

Yuan Zijiao, Shi Shenghui, Wu Xiaoguo, Wang Shanshan, Tian Weiqi

机构信息

Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui 241002, PR China; Center of Cooperative Innovation for Recovery and Reconstruction of Degraded Ecosystem in Wanjiang City Belt, Wuhu, Anhui 241002, PR China.

Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui 241002, PR China; Center of Cooperative Innovation for Recovery and Reconstruction of Degraded Ecosystem in Wanjiang City Belt, Wuhu, Anhui 241002, PR China.

出版信息

Sci Total Environ. 2024 Nov 15;951:175394. doi: 10.1016/j.scitotenv.2024.175394. Epub 2024 Aug 14.

Abstract

In this study, coal and coal-based solid wastes (coal gangue, fly ash, bottom ash, desulfurized gypsum and tar residue) were collected from major coal mines, power plants and coking plants in Lianghuai mining area (LH), China, and were analyzed for 76 polycyclic aromatic compounds (PACs), 27 n-alkanes and 2 isoprenoids (phytane and pristane). The total n-alkanes concentrations and ∑ PACs in raw coals (640 ± 600 and 180 ± 87 μg/g) were higher than those in coal-based solid wastes (47 ± 40 and 24 ± 25 μg/g), but were lower than those in tar residue (3700 and 63,000 μg/g). It was discovered that the depositional paleoenvironment in LH was mostly a lacustrine and freshwater environment with oxidizing conditions and mixed organic matter input, but the Huainan coalfield had stronger oxidizing conditions and more input of terrestrial organic matter than that of the Huaibei coalfield. Alkylated PACs made up 56 ± 12 % of the ∑PACs in raw coals, whereas solid wastes mainly consisted of 16 EPA PAHs (66 ± 16 %). Coal combustion and gangue weathering altered the structural properties of n-alkanes and PACs, resulting in a significant loss of n-alkanes and PACs, a higher proportion of parent PACs, and an increased abundance of short n-alkanes in the products (No apparent change of n-alkanes composition was observed through gangue weathering). The toxicity of PACs in raw coal and its solid wastes in LH from high to low was tar residue, raw coal, coal gangue, and coal-fired products. This investigation further confirmed that traditional diagnostic ratios may distort source information, and that they should not be used to assess PACs sources from raw coal particles or coal gangues, but rather to identify combustion sources near the point source. In addition, Retene/(Retene + Chrysene) < 0.03 may indicate direct contamination of raw coal particles.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验