School of Accounting, Guizhou University of Finance and Economics, Guiyang, Guizhou, China.
Cash Crop Institute, Liaoning Academy of Agricultural Science, Liaoyang, Liaoning, China.
PeerJ. 2024 Aug 7;12:e17871. doi: 10.7717/peerj.17871. eCollection 2024.
This study evaluated millet germplasms in Liaoning Province to support the collection, preservation and innovation of millet germplasm resources.
The study was conducted from 2018 to 2020, involved the selection of 105 millet germplasm resources from the Germplasm Bank of the Liaoning Academy of Agricultural Sciences (LAAS), the observation and recording of 31 traits, and the application of multivariate analysis methods to assess phenotypic diversity.
From the diversity analysis and correlation analysis, it was found that the tested traits had abundant diversity and complex correlations among them. Principal component analysis (PCA) comprehensively analyzed all quantitative traits and extracted seven principal components. Grey relational analysis (GRA) highlighted the varied contributions of different traits to yield. Through systematic cluster analysis (SCA), the resources were categorized into six groups at Euclidean distance of 17.09. K-mean cluster analysis determined the distribution interval and central value of each trait, then identified resources with desirable traits.
The results revealed resources that possess characteristics such as upthrow seedling leaves, more tillers and branches, larger and well-formed ears, and lodging resistance prefer to higher grain yield. It was also discovered that the subear internode length (SIL) could be an indicator for maturity selection. Four specific resources, namely, Dungu No. 1, Xiao-li-xiang, Basen Shengu, and Yuhuanggu No. 1, were identified for further breeding and practical applications.
本研究对辽宁省谷子种质资源进行评价,为谷子种质资源的收集、保存和创新提供支持。
本研究于 2018 年至 2020 年进行,涉及从辽宁省农业科学院种质库(LAAS)中选择 105 份谷子种质资源,观察和记录 31 个性状,并应用多元分析方法评估表型多样性。
从多样性分析和相关性分析中发现,测试的性状具有丰富的多样性,且相互之间存在复杂的相关性。主成分分析(PCA)综合分析了所有的定量性状,提取了 7 个主成分。灰色关联分析(GRA)突出了不同性状对产量的不同贡献。通过系统聚类分析(SCA),在欧几里得距离为 17.09 的情况下,将资源分为 6 组。K-均值聚类分析确定了每个性状的分布区间和中心值,然后确定了具有理想性状的资源。
研究结果揭示了具有向上举苗叶、更多分蘖和分枝、更大且形状良好的穗、抗倒伏等特点的资源更倾向于获得更高的产量。此外,还发现亚穗节间长度(SIL)可以作为成熟度选择的指标。鉴定出了四个特定的资源,即 Dungu No.1、小粒香、巴什恩古和玉皇谷 No.1,可用于进一步的选育和实际应用。