Suppr超能文献

基于机器学习的整合开发了一种多重程序性细胞死亡特征,用于预测结直肠癌的临床结果和药物敏感性。

Machine learning-based integration develops a multiple programmed cell death signature for predicting the clinical outcome and drug sensitivity in colorectal cancer.

作者信息

Li Chunhong, Mao Yuhua, Liu Yi, Hu Jiahua, Su Chunchun, Tan Haiyin, Hou Xianliang, Ou Minglin

机构信息

Central Laboratory, The Second Affiliated Hospital of Guilin Medical University.

Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University.

出版信息

Anticancer Drugs. 2025 Jan 1;36(1):1-18. doi: 10.1097/CAD.0000000000001654. Epub 2024 Aug 9.

Abstract

Tumorigenesis and treatment are closely associated with various programmed cell death (PCD) patterns. However, the coregulatory role of multiple PCD patterns in colorectal cancer (CRC) remains unknown. In this study, we developed a multiple PCD index (MPCDI) based on 19 PCD patterns using two machine learning algorithms for risk stratification, prognostic prediction, construction of nomograms, immune cell infiltration analysis, and chemotherapeutic drug sensitivity analysis. As a result, in the TCGA-COAD, GSE17536, and GSE29621 cohorts, the MPCDI can effectively distinguished survival outcomes in CRC patients and served as an independent factor for CRC patients. We then explored the immune infiltration landscape in two groups using the nine algorithms and found more overall immune infiltration in the high-MPCDI group. TIDE scores suggested that the increased immune evasion potential and immune checkpoint inhibition therapy may be less effective in the high-MPCDI group. Immunophenoscores indicated that anti-PD1, anti-cytotoxic T-lymphocyte associated antigen 4 (anti-CTLA4), and anti-PD1-CTLA4 combination therapies are less effective in the high-MPCDI group. In addition, the high-MPCDI group was more sensitive to AZD1332, Foretinib, and IGF1R_3801, and insensitive to AZD3759, AZD5438, AZD6482, Erlotinib, GSK591, IAP_5620, and Picolinici-acid, which suggests that the MPCDI can guide drug selection for CRC patients. As a new clinical classifier, the MPCDI can more accurately distinguish CRC patients who benefit from immunotherapy and develop personalized treatment strategies for CRC patients.

摘要

肿瘤发生与治疗与多种程序性细胞死亡(PCD)模式密切相关。然而,多种PCD模式在结直肠癌(CRC)中的共同调节作用仍不清楚。在本研究中,我们基于19种PCD模式,使用两种机器学习算法开发了一种多PCD指数(MPCDI),用于风险分层、预后预测、列线图构建、免疫细胞浸润分析和化疗药物敏感性分析。结果显示,在TCGA-COAD、GSE17536和GSE29621队列中,MPCDI能够有效区分CRC患者的生存结局,并作为CRC患者的独立因素。然后,我们使用九种算法探索了两组的免疫浸润情况,发现高MPCDI组的总体免疫浸润更多。TIDE评分表明,高MPCDI组的免疫逃逸潜力增加,免疫检查点抑制治疗可能效果较差。免疫表型评分表明,抗PD1、抗细胞毒性T淋巴细胞相关抗原4(抗CTLA4)和抗PD1-CTLA4联合疗法在高MPCDI组中效果较差。此外,高MPCDI组对AZD1332、Foretinib和IGF1R_3801更敏感,对AZD3759、AZD5438、AZD6482、厄洛替尼、GSK591、IAP_5620和吡啶甲酸不敏感,这表明MPCDI可以指导CRC患者的药物选择。作为一种新的临床分类器,MPCDI可以更准确地区分从免疫治疗中获益的CRC患者,并为CRC患者制定个性化的治疗策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验