IEEE J Biomed Health Inform. 2024 Nov;28(11):6629-6640. doi: 10.1109/JBHI.2024.3441600. Epub 2024 Nov 6.
Walking-assistive devices require adaptive control methods to ensure smooth transitions between various modes of locomotion. For this purpose, detecting human locomotion modes (e.g., level walking or stair ascent) in advance is crucial for improving the intelligence and transparency of such robotic systems. This study proposes Deep-STF, a unified end-to-end deep learning model designed for integrated feature extraction in spatial, temporal, and frequency dimensions from surface electromyography (sEMG) signals. Our model enables accurate and robust continuous prediction of nine locomotion modes and 15 transitions at varying prediction time intervals, ranging from 100 to 500 ms. Experimental results showcased Deep-STP's cutting-edge prediction performance across diverse locomotion modes and transitions, relying solely on sEMG data. When forecasting 100 ms ahead, Deep-STF achieved an improved average prediction accuracy of 96.60%, outperforming seven benchmark models. Even with an extended 500ms prediction horizon, the accuracy only marginally decreased to 93.22%. The averaged stable prediction times for detecting next upcoming transitions spanned from 31.47 to 371.58 ms across the 100-500 ms time advances. Although the prediction accuracy of the trained Deep-STF initially dropped to 71.12% when tested on four new terrains, it achieved a satisfactory accuracy of 92.51% after fine-tuning with just 5 trials and further improved to 96.27% with 15 calibration trials. These results demonstrate the remarkable prediction ability and adaptability of Deep-STF, showing great potential for integration with walking-assistive devices and leading to smoother, more intuitive user interactions.
助行设备需要自适应控制方法,以确保在各种运动模式之间平稳过渡。为此,提前检测人体运动模式(例如,水平行走或楼梯上升)对于提高此类机器人系统的智能性和透明度至关重要。本研究提出了 Deep-STF,这是一种统一的端到端深度学习模型,旨在从表面肌电图 (sEMG) 信号的空间、时间和频率维度进行综合特征提取。我们的模型能够准确、稳健地预测 9 种运动模式和 15 种不同预测时间间隔(100 到 500 毫秒)的转换。实验结果展示了 Deep-STF 在各种运动模式和转换中的领先预测性能,仅依赖于 sEMG 数据。在预测提前 100 毫秒时,Deep-STF 的平均预测精度提高到 96.60%,优于七个基准模型。即使预测时间延长到 500 毫秒,精度仅略有下降至 93.22%。在 100-500 毫秒的时间推进中,检测下一个即将到来的转换的平均稳定预测时间从 31.47 到 371.58 毫秒不等。虽然在四个新地形上测试时,训练有素的 Deep-STF 的预测精度最初降至 71.12%,但经过仅 5 次微调后,精度提高到了 92.51%,经过 15 次校准试验后,精度进一步提高到了 96.27%。这些结果表明了 Deep-STF 的出色预测能力和适应性,有望与助行设备集成,实现更流畅、更直观的用户交互。