Zhou Yanliang, Liang Lili, Wang Congying, Sun Fuxiang, Zheng Lirong, Qi Haifeng, Wang Bin, Wang Xiuyun, Au Chak-Tong, Wang Junjie, Jiang Lilong, Hosono Hideo
National Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University, Fuzhou 350002, China.
State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China.
J Am Chem Soc. 2024 Aug 21;146(33):23054-23066. doi: 10.1021/jacs.4c03998. Epub 2024 Aug 12.
To date, NH synthesis under mild conditions is largely confined to precious Ru catalysts, while nonprecious metal (NPM) catalysts are confronted with the challenge of low catalytic activity due to the inverse relationship between the N dissociation barrier and NH ( = 1-3) desorption energy. Herein, we demonstrate NPM (Co, Ni, and Re)-mediated MoCT MXene (where T denotes the OH group) to achieve efficient NH synthesis under mild conditions. In particular, the NH synthesis rate over Re/MoCT and Ni/MoCT can reach 22.4 and 21.5 mmol g h at 400 °C and 1 MPa, respectively, higher than that of NPM-based catalysts and Cs-Ru/MgO ever reported. Experimental and theoretical studies reveal that Mo over MoCT has a strong ability for N activation; thus, the rate-determining step is shifted from conventional N dissociation to NH* formation. NPM is mainly responsible for H activation, and the high reactivity of spillover hydrogen and electron transfer from NPM to the N-rich MoCT surface can efficiently facilitate nitrogen hydrogenation and the subsequent desorption of NH. With the synergistic effect of the dual active sites bridged by H-spillover, the NPM-mediated MoCT catalysts circumvent the major obstacle, making NH synthesis under mild conditions efficient.
迄今为止,温和条件下的氨合成主要局限于贵金属钌催化剂,而非贵金属(NPM)催化剂由于氮解离能垒与氨(ν = 1 - 3)脱附能之间的反比关系,面临着催化活性低的挑战。在此,我们展示了由NPM(钴、镍和铼)介导的MoCT MXene(其中T表示羟基)在温和条件下实现高效氨合成。特别是,在400℃和1MPa条件下,铼/ MoCT和镍/ MoCT上的氨合成速率分别可达22.4和21.5 mmol g⁻¹ h⁻¹,高于以往报道的基于NPM的催化剂和Cs - Ru/MgO的氨合成速率。实验和理论研究表明,MoCT上的钼具有很强的氮活化能力;因此,速率决定步骤从传统的氮解离转变为NH*的形成。NPM主要负责氢的活化,溢流氢的高反应活性以及从NPM到富氮MoCT表面的电子转移能够有效地促进氮氢化以及随后氨的脱附。在由氢溢流桥接的双活性位点的协同作用下,NPM介导的MoCT催化剂克服了主要障碍,使得温和条件下的氨合成高效进行。