Suppr超能文献

机制多参数优化和大规模筛选在小分子治疗项目药代动力学相关性中的应用。

Application of Mechanistic Multiparameter Optimization and Large-Scale to Pharmacokinetics Correlations to Small-Molecule Therapeutic Projects.

机构信息

Bristol-Myers Squibb Company, San Diego, California 92121, United States.

CmaxDMPK LLC, Framingham, Massachusetts 01701, United States.

出版信息

Mol Pharm. 2024 Sep 2;21(9):4312-4323. doi: 10.1021/acs.molpharmaceut.4c00256. Epub 2024 Aug 12.

Abstract

Computational chemistry and machine learning are used in drug discovery to predict the target-specific and pharmacokinetic properties of molecules. Multiparameter optimization (MPO) functions are used to summarize multiple properties into a single score, aiding compound prioritization. However, over-reliance on subjective MPO functions risks reinforcing human bias. Mechanistic modeling approaches based on physiological relevance can be adapted to meet different potential key objectives of the project (., minimizing dose, maximizing safety margins, and/or minimizing drug-drug interaction risk) while retaining the same underlying model structure. The current work incorporates recent approaches to predict pharmacokinetic (PK) properties and validates to correlation analysis to support mechanistic PK MPO. Examples of use and impact in small-molecule drug discovery projects are provided. Overall, the mechanistic MPO identifies 83% of the compounds considered as short-listed for clinical experiments in the top second percentile, and 100% in the top 10th percentile, resulting in an area under the receiver operating characteristic curve (AUCROC) > 0.95. In addition, the MPO score successfully recapitulates the chronological progression of the optimization process across different scaffolds. Finally, the MPO scores for compounds characterized in pharmacokinetics experiments are markedly higher compared with the rest of the compounds being synthesized, highlighting the potential of this tool to reduce the reliance on testing for compound screening.

摘要

计算化学和机器学习在药物发现中用于预测分子的靶标特异性和药代动力学性质。多参数优化 (MPO) 函数用于将多种性质总结为单个分数,有助于化合物优先级排序。然而,过度依赖主观的 MPO 函数有强化人为偏见的风险。基于生理相关性的机械建模方法可以适应不同的潜在项目关键目标(例如,最小化剂量、最大化安全边际和/或最小化药物相互作用风险),同时保留相同的基础模型结构。目前的工作结合了预测药代动力学(PK)性质的最新方法,并通过相关性分析进行验证,以支持基于机制的 PK MPO。提供了小分子药物发现项目中使用和影响的示例。总体而言,机械 MPO 确定了前 2%中排名前 2%的考虑作为临床试验候选的化合物中有 83%,在排名前 10%中有 100%,从而得出的接收者操作特征曲线(ROC)下面积(AUCROC)>0.95。此外,MPO 得分成功地再现了不同支架优化过程的时间进展。最后,在药代动力学实验中表征的化合物的 MPO 得分明显高于正在合成的其他化合物,突出了该工具在减少对化合物筛选的测试依赖方面的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验