Fujii Ryosuke, Melotti Roberto, Köttgen Anna, Teumer Alexander, Giardiello Daniele, Pattaro Cristian
Institute for Biomedicine, Eurac Research, Bolzano/Bozen, Italy.
Department of Preventive Medical Science, Fujita Health University School of Medical Sciences, Toyoake, Japan.
Clin Kidney J. 2024 Jul 5;17(8):sfae207. doi: 10.1093/ckj/sfae207. eCollection 2024 Aug.
BACKGROUND: Reduced kidney function is a risk factor of cardiovascular and all-cause mortality. This association was demonstrated for several kidney function markers, but it is unclear whether integrating multiple measured markers may improve mortality risk prediction. METHODS: We conducted an exploratory factor analysis (EFA) of serum creatinine- and cystatin C-based estimated glomerular filtration rate [eGFRcre and eGFRcys; derived by the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) and European Kidney Function Consortium (EKFC) equations], blood urea nitrogen (BUN), uric acid and serum albumin among 366 758 participants in the UK Biobank without a history of kidney failure. Fitting Cox proportional hazards models, we compared the ability of the identified latent factors to predict overall mortality and mortality by cardiovascular disease (CVD), also considering CVD-specific causes like coronary heart disease (CHD) and cerebrovascular disease. RESULTS: During 12.5 years of follow-up, 26 327 participants died from any cause, 5376 died from CVD, 2908 died from CHD and 1116 died from cerebrovascular disease. We identified two latent factors, EFA1 and EFA2, both representing kidney function variations. When using the CKD-EPI equation, EFA1 performed like eGFRcys, with EFA1 showing slightly larger hazard ratios for overall and CVD-related mortality. At 10 years of follow-up, EFA1 and eGFRcys showed moderate discrimination performance for CVD-related mortality, outperforming all other kidney indices. eGFRcre was the least predictive marker across all outcomes. When using the EKFC equation, eGFRcys performed better than EFA1 while all other results remaining similar. CONCLUSIONS: While EFA is an attractive approach to capture the complex effects of kidney function, eGFRcys remains the most practical and effective measurement for all-cause and CVD mortality risk prediction.
背景:肾功能下降是心血管疾病和全因死亡率的危险因素。这种关联已在多种肾功能标志物中得到证实,但尚不清楚整合多个测量标志物是否能改善死亡风险预测。 方法:我们对英国生物银行中366758名无肾衰竭病史的参与者的血清肌酐和基于胱抑素C的估计肾小球滤过率[eGFRcre和eGFRcys;由慢性肾脏病流行病学协作组(CKD-EPI)和欧洲肾功能联盟(EKFC)方程推导得出]、血尿素氮(BUN)、尿酸和血清白蛋白进行了探索性因子分析(EFA)。通过拟合Cox比例风险模型,我们比较了所识别的潜在因子预测总体死亡率和心血管疾病(CVD)死亡率的能力,同时也考虑了冠心病(CHD)和脑血管疾病等特定的CVD病因。 结果:在12.5年的随访期间,26327名参与者死于任何原因,5376名死于CVD,2908名死于CHD,1116名死于脑血管疾病。我们识别出两个潜在因子,EFA1和EFA2,均代表肾功能变化。使用CKD-EPI方程时,EFA1的表现与eGFRcys相似,EFA1在总体死亡率和CVD相关死亡率方面的风险比略大。在随访10年时,EFA1和eGFRcys对CVD相关死亡率显示出中等的判别性能,优于所有其他肾脏指标。eGFRcre在所有结局中是预测性最差的标志物。使用EKFC方程时,eGFRcys的表现优于EFA1,而所有其他结果保持相似。 结论:虽然EFA是一种捕捉肾功能复杂影响的有吸引力的方法,但eGFRcys仍然是全因和CVD死亡风险预测最实用和有效的测量指标。
N Engl J Med. 2023-1-26
JAMA Netw Open. 2022-10-3
Lancet Glob Health. 2022-8
N Engl J Med. 2021-11-4