文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

整合多种肾功能标志物以预测全因死亡率和心血管疾病死亡率:对366758名英国生物银行参与者的前瞻性分析。

Integrating multiple kidney function markers to predict all-cause and cardiovascular disease mortality: prospective analysis of 366 758 UK Biobank participants.

作者信息

Fujii Ryosuke, Melotti Roberto, Köttgen Anna, Teumer Alexander, Giardiello Daniele, Pattaro Cristian

机构信息

Institute for Biomedicine, Eurac Research, Bolzano/Bozen, Italy.

Department of Preventive Medical Science, Fujita Health University School of Medical Sciences, Toyoake, Japan.

出版信息

Clin Kidney J. 2024 Jul 5;17(8):sfae207. doi: 10.1093/ckj/sfae207. eCollection 2024 Aug.


DOI:10.1093/ckj/sfae207
PMID:39135936
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11317837/
Abstract

BACKGROUND: Reduced kidney function is a risk factor of cardiovascular and all-cause mortality. This association was demonstrated for several kidney function markers, but it is unclear whether integrating multiple measured markers may improve mortality risk prediction. METHODS: We conducted an exploratory factor analysis (EFA) of serum creatinine- and cystatin C-based estimated glomerular filtration rate [eGFRcre and eGFRcys; derived by the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) and European Kidney Function Consortium (EKFC) equations], blood urea nitrogen (BUN), uric acid and serum albumin among 366 758 participants in the UK Biobank without a history of kidney failure. Fitting Cox proportional hazards models, we compared the ability of the identified latent factors to predict overall mortality and mortality by cardiovascular disease (CVD), also considering CVD-specific causes like coronary heart disease (CHD) and cerebrovascular disease. RESULTS: During 12.5 years of follow-up, 26 327 participants died from any cause, 5376 died from CVD, 2908 died from CHD and 1116 died from cerebrovascular disease. We identified two latent factors, EFA1 and EFA2, both representing kidney function variations. When using the CKD-EPI equation, EFA1 performed like eGFRcys, with EFA1 showing slightly larger hazard ratios for overall and CVD-related mortality. At 10 years of follow-up, EFA1 and eGFRcys showed moderate discrimination performance for CVD-related mortality, outperforming all other kidney indices. eGFRcre was the least predictive marker across all outcomes. When using the EKFC equation, eGFRcys performed better than EFA1 while all other results remaining similar. CONCLUSIONS: While EFA is an attractive approach to capture the complex effects of kidney function, eGFRcys remains the most practical and effective measurement for all-cause and CVD mortality risk prediction.

摘要

背景:肾功能下降是心血管疾病和全因死亡率的危险因素。这种关联已在多种肾功能标志物中得到证实,但尚不清楚整合多个测量标志物是否能改善死亡风险预测。 方法:我们对英国生物银行中366758名无肾衰竭病史的参与者的血清肌酐和基于胱抑素C的估计肾小球滤过率[eGFRcre和eGFRcys;由慢性肾脏病流行病学协作组(CKD-EPI)和欧洲肾功能联盟(EKFC)方程推导得出]、血尿素氮(BUN)、尿酸和血清白蛋白进行了探索性因子分析(EFA)。通过拟合Cox比例风险模型,我们比较了所识别的潜在因子预测总体死亡率和心血管疾病(CVD)死亡率的能力,同时也考虑了冠心病(CHD)和脑血管疾病等特定的CVD病因。 结果:在12.5年的随访期间,26327名参与者死于任何原因,5376名死于CVD,2908名死于CHD,1116名死于脑血管疾病。我们识别出两个潜在因子,EFA1和EFA2,均代表肾功能变化。使用CKD-EPI方程时,EFA1的表现与eGFRcys相似,EFA1在总体死亡率和CVD相关死亡率方面的风险比略大。在随访10年时,EFA1和eGFRcys对CVD相关死亡率显示出中等的判别性能,优于所有其他肾脏指标。eGFRcre在所有结局中是预测性最差的标志物。使用EKFC方程时,eGFRcys的表现优于EFA1,而所有其他结果保持相似。 结论:虽然EFA是一种捕捉肾功能复杂影响的有吸引力的方法,但eGFRcys仍然是全因和CVD死亡风险预测最实用和有效的测量指标。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d297/11317837/1598f8e87be1/sfae207fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d297/11317837/50dcf5d61136/sfae207fig1g.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d297/11317837/0414d698bcac/sfae207fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d297/11317837/cea41d538923/sfae207fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d297/11317837/1598f8e87be1/sfae207fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d297/11317837/50dcf5d61136/sfae207fig1g.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d297/11317837/0414d698bcac/sfae207fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d297/11317837/cea41d538923/sfae207fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d297/11317837/1598f8e87be1/sfae207fig3.jpg

相似文献

[1]
Integrating multiple kidney function markers to predict all-cause and cardiovascular disease mortality: prospective analysis of 366 758 UK Biobank participants.

Clin Kidney J. 2024-7-5

[2]
Creatinine-based European Kidney Function Consortium equation is superior to the Chronic Kidney Disease Epidemiology Collaboration equation for mortality risk stratification in general non-Black population.

Eur J Prev Cardiol. 2023-10-26

[3]
Structural equation modeling (SEM) of kidney function markers and longitudinal CVD risk assessment.

PLoS One. 2023

[4]
The clinical utility and cost impact of cystatin C measurement in the diagnosis and management of chronic kidney disease: A primary care cohort study.

PLoS Med. 2017-10-10

[5]
Differential Associations of Cystatin C Versus Creatinine-Based Kidney Function With Risks of Cardiovascular Event and Mortality Among South Asian Individuals in the UK Biobank.

J Am Heart Assoc. 2023-2-7

[6]
Comparison of estimated glomerular filtration rate by the chronic kidney disease epidemiology collaboration (CKD-EPI) equations with and without Cystatin C for predicting clinical outcomes in elderly women.

PLoS One. 2014-9-29

[7]
Estimated Glomerular Filtration Rate (eGFR) based on cystatin C was associated with increased risk of hip and proximal humerus fractures in women and decreased risk of hip fracture in men, whereas eGFR based on creatinine was not associated with fracture risk in both sexes: The Tromsø Study.

Bone. 2021-7

[8]
Kidney Function as Risk Factor and Predictor of Cardiovascular Outcomes and Mortality Among Older Adults.

Am J Kidney Dis. 2021-3

[9]
Impact of Kidney Function on Cardiovascular Risk and Mortality: A Comparison of South Asian and European Cohorts.

Am J Nephrol. 2019-10-30

[10]
Creatinine versus cystatin C for renal function-based mortality prediction in an elderly cohort: The Northern Manhattan Study.

PLoS One. 2020-1-15

引用本文的文献

[1]
Cardiac Biomarkers Predict Major Adverse Cardiac Events (MACE) in Incident Haemodialysis Patients: Results from a Global Federated Database.

Biomedicines. 2025-2-5

本文引用的文献

[1]
Structural equation modeling (SEM) of kidney function markers and longitudinal CVD risk assessment.

PLoS One. 2023

[2]
Cystatin C-Based Equation to Estimate GFR without the Inclusion of Race and Sex.

N Engl J Med. 2023-1-26

[3]
Assessment of Cystatin C Level for Risk Stratification in Adults With Chronic Kidney Disease.

JAMA Netw Open. 2022-10-3

[4]
The new, race-free, Chronic Kidney Disease Epidemiology Consortium (CKD-EPI) equation to estimate glomerular filtration rate: is it applicable in Europe? A position statement by the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM).

Clin Chem Lab Med. 2023-1-27

[5]
Measurement of kidney function in Malawi, South Africa, and Uganda: a multicentre cohort study.

Lancet Glob Health. 2022-8

[6]
New Creatinine- and Cystatin C-Based Equations to Estimate GFR without Race.

N Engl J Med. 2021-11-4

[7]
Addition of cystatin C predicts cardiovascular death better than creatinine in intensive care.

Heart. 2022-2

[8]
Development and Validation of a Modified Full Age Spectrum Creatinine-Based Equation to Estimate Glomerular Filtration Rate : A Cross-sectional Analysis of Pooled Data.

Ann Intern Med. 2021-2

[9]
Global, regional, and national burden of chronic kidney disease, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017.

Lancet. 2020-2-13

[10]
Glomerular filtration rate by differing measures, albuminuria and prediction of cardiovascular disease, mortality and end-stage kidney disease.

Nat Med. 2019-11-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索