Yang Shaokun, Yue Tongkui, Zhao Hengheng, Duan Pengwei, Zhang Liqun, Liu Jun
State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China.
Langmuir. 2024 Aug 13. doi: 10.1021/acs.langmuir.4c01009.
The introduction of nanoparticles (NPs) presents boundless possibilities for enhancing the performance of polymer nanocomposites (PNCs). Consequently, the design of novel NPs becomes of paramount significance for PNCs. In our study, we employ the dumbbell two-component model of Janus nanoparticles (JNPs) and design rigid-soft JNPs as fillers. Using coarse-grained molecular dynamics simulations, we systematically investigate the dispersion, dynamics, and mechanical properties of these novel PNCs. First, we determine the optimal dispersion conditions by studying and ε. The simulation indicates that when the interaction between polymer chains and JNPs is a repulsive potential, the JNPs tend to aggregate together, forming a cluster with soft NPs inside and rigid NPs outside. Conversely, under attractive interactions, JNPs show superior dispersion uniformity compared to the repulsive system, and as ε increases, the dispersion improves. Then, the mean square displacement (MSD) indicates that JNPs effectively impede the mobility of polymer chains, with the degree of hindrance increasing as ε grows; this effect is more pronounced in attractive systems. Comparing JNPs of different particle sizes, we find that smaller JNP systems exhibit higher temperature sensitivity. Furthermore, there exists a critical particle size ( ≈ 5σ) under a constant filling fraction at which the NPs exert the most pronounced restriction effect on the polymer. Next, upon examining the mechanical behavior, we find that the rigid-soft JNPs demonstrate notable elasticity and variability compared to traditional NPs. This observation is confirmed through measurements of the bond orientation and mean square radius of gyration of the soft segments of JNPs. In summary, this research provides a comprehensive understanding of the intricate interplay among various factors, offering valuable insights for optimizing JNP dispersion and enhancing the mechanical properties of PNCs.
纳米粒子(NPs)的引入为提高聚合物纳米复合材料(PNCs)的性能带来了无限可能。因此,新型纳米粒子的设计对聚合物纳米复合材料而言至关重要。在我们的研究中,我们采用了Janus纳米粒子(JNPs)的哑铃双组分模型,并设计了刚性-柔性Janus纳米粒子作为填料。通过粗粒度分子动力学模拟,我们系统地研究了这些新型聚合物纳米复合材料的分散性、动力学和力学性能。首先,我们通过研究 和ε来确定最佳分散条件。模拟结果表明,当聚合物链与Janus纳米粒子之间的相互作用为排斥势时,Janus纳米粒子倾向于聚集在一起,形成内部为柔性纳米粒子、外部为刚性纳米粒子的聚集体。相反,在吸引相互作用下,与排斥体系相比,Janus纳米粒子表现出更好的分散均匀性,并且随着ε的增加,分散性得到改善。然后,均方位移(MSD)表明Janus纳米粒子有效地阻碍了聚合物链的迁移,阻碍程度随着ε的增加而增大;这种效应在吸引体系中更为明显。比较不同粒径的Janus纳米粒子,我们发现较小粒径的Janus纳米粒子体系表现出更高的温度敏感性。此外,在恒定填充分数下存在一个临界粒径(≈5σ),此时纳米粒子对聚合物施加的限制作用最为显著。接下来,在研究力学行为时,我们发现与传统纳米粒子相比,刚性-柔性Janus纳米粒子表现出显著的弹性和可变性。通过测量Janus纳米粒子柔性链段的键取向和均方回转半径,这一观察结果得到了证实。总之,本研究全面理解了各种因素之间的复杂相互作用,为优化Janus纳米粒子的分散性和提高聚合物纳米复合材料的力学性能提供了有价值的见解。