School of Psychology, Georgia Institute of Technology, Atlanta, GA, USA.
School of Interactive Computing and School of Psychology, Georgia Institute of Technology, Atlanta, GA, USA.
Psychol Res. 2024 Nov;88(8):2303-2319. doi: 10.1007/s00426-024-02008-w. Epub 2024 Aug 14.
Computational estimation requires a breadth of strategies and selection of the relevant strategy given a problem's features. We used the new Test of Estimation Strategies (TES), composed of 20 arithmetic problems (e.g., 144 x 0.38), to investigate variability in strategy use in young adults. The TES targets the five estimation strategies that adults use most frequently, which fall into two Classes. The three Class One strategies are general-purpose and taught in schools. Proceed Algorithmically entails applying an algorithm (e.g., shifting a decimal place). Round One and Round Two are defined as rounding one or both operands, respectively. The two Class Two strategies are more advanced, requiring application of conceptual knowledge of mathematics. Known-and-Nice is used when a participant relies on a well-known mathematical fact (e.g., 25 × 4 = 100) to form an estimate. Fractions uses a fraction or percentage in the estimation process (e.g., 943 x 0.48 is about 50% or half of 900). We divided our sample of adult participants into two groups (i.e., high, average) based on their estimation performance on the TES. The high-performance group used a broader range of strategies and more frequently applied the most relevant strategy given a problem's features. Overall estimation accuracy was correlated with mathematical achievement, as were strategy breadth and strategy relevance. However, none of these associations survived first controlling for verbal achievement. Participants' strategy reports suggested that the TES problems were generally successful in eliciting the five target strategies and provided evidence for a new strategy, Partitioning. These findings provide a basis for future instructional studies to improve students' computational estimation.
计算估计需要广泛的策略,并根据问题的特征选择相关策略。我们使用新的估计策略测试(TES),由 20 个算术问题组成(例如,144 x 0.38),来研究年轻人在策略使用上的变化。TES 针对成年人最常使用的五种估计策略,这些策略分为两类。前三个一类策略是通用的,在学校教授。按算法进行意味着应用算法(例如,移动小数点位置)。四舍五入一是将一个或两个操作数四舍五入,四舍五入二是将一个或两个操作数四舍五入。后两个二类策略更高级,需要应用数学的概念知识。当参与者依赖一个熟知的数学事实(例如,25 × 4 = 100)来形成估计时,就会使用已知且合适。在估计过程中使用分数或百分比(例如,943 x 0.48 约为 50%或 900 的一半),使用分数。我们根据他们在 TES 上的估计表现,将成年参与者样本分为两组(即高、平均)。高绩效组使用了更广泛的策略,并且更频繁地应用了最相关的策略,以适应问题的特征。总体估计准确性与数学成绩相关,策略广度和策略相关性也是如此。然而,在首先控制了语言成绩之后,这些关联都没有存活下来。参与者的策略报告表明,TES 问题通常能够成功引出五个目标策略,并提供了一种新策略——分区的证据。这些发现为未来的教学研究提供了基础,以提高学生的计算估计能力。