Department of Orthodontics and Dentofacial Orthopedics, Dental School/Medical Faculty, University of Bern, Bern, Switzerland.
Private practice, Greece.
J Dent. 2024 Oct;149:105309. doi: 10.1016/j.jdent.2024.105309. Epub 2024 Aug 13.
In meta-analyses with few studies, between-study heterogeneity is poorly estimated. The Hartung and Knapp (HK) correction and the prediction intervals can account for the uncertainty in estimating heterogeneity and the range of effect sizes we may encounter in future trials, respectively. The aim of this study was to assess the reported use of the HK correction in oral health meta-analyses and to compare the published reported results and interpretation i) to those calculated using eight heterogeneity estimators and the HK adjustment ii) and to the prediction intervals (PIs).
We sourced systematic reviews (SRs) published between 2021 and 2023 in eighteen leading specialty and general dental journals. We extracted study characteristics at the SR and meta-analysis level and re-analyzed the selected meta-analyses via the random-effects model and eight heterogeneity estimators, with and without the HK correction. For each meta-analysis, we re-calculated the overall estimate, the P-value, the 95 % confidence interval (CI) and the PI.
We analysed 292 meta-analyses. The median number of primary studies included in meta-analysis was 8 (interquartile range [IQR] = [5.75-15] range: 3-121). Only 3/292 meta-analyses used the HK adjustment and 12/292 reported PIs. The percentage of statistically significant results that became non-significant varied across the heterogeneity estimators (7.45 %- 16.59 %). Based on the PIs, >60 % of meta-analyses with statistically significant results are likely to change in the future and >40 % of the PIs included the opposite pooled effect.
The precision and statistical significance of the pooled estimates from meta-analyses with at least three studies is sensitive to the HK correction, the heterogeneity variance estimator, and the PIs.
Uncertainty in meta-analyses estimates should be considered especially when a small number of trials is available or vary notably in their precision. Misinterpretation of the summary results can lead to ineffective interventions being applied in clinical practice.
在研究数量较少的荟萃分析中,组间异质性的估计往往不太准确。Hartung 和 Knapp(HK)校正法和预测区间分别可以用来估计异质性的不确定性以及我们在未来试验中可能遇到的效应大小范围。本研究旨在评估口腔健康荟萃分析中报告的 HK 校正法的使用情况,并比较报告的结果和解释,即:i)与使用八种异质性估计值和 HK 调整法计算的结果和解释 ii)与预测区间(PI)。
我们收集了 2021 年至 2023 年在 18 种主要的专业和普通牙科期刊上发表的系统评价(SR)。我们提取了 SR 和荟萃分析层面的研究特征,并通过随机效应模型和八种异质性估计值对选定的荟萃分析进行了重新分析,包括使用和不使用 HK 校正法。对于每个荟萃分析,我们重新计算了总估计值、P 值、95%置信区间(CI)和 PI。
我们分析了 292 项荟萃分析。荟萃分析中纳入的原始研究数量中位数为 8(四分位距 [IQR] = [5.75-15]范围:3-121)。只有 3/292 项荟萃分析使用了 HK 调整法,12/292 项荟萃分析报告了 PI。基于不同的异质性估计值,统计学显著结果变为非显著结果的比例在 7.45%-16.59%之间变化。基于 PI,>60%的具有统计学显著结果的荟萃分析在未来可能会发生变化,且>40%的 PI 包含了相反的汇总效应。
对于至少有三项研究的荟萃分析,汇总估计的精确性和统计学显著性受到 HK 校正法、异质性方差估计值和 PI 的影响。
当可用的试验数量较少或其精度差异较大时,应考虑荟萃分析估计值的不确定性。对汇总结果的误解可能导致在临床实践中应用无效的干预措施。