Suppr超能文献

全球保留模型在液相色谱分离优化中的性能(二):复杂多分析物样品。

Performance of global retention models in the optimisation of the liquid chromatographic separation (II): Complex multi-analyte samples.

机构信息

Department of Analytical Chemistry, Faculty of Chemistry, Universitat de València, C/ Dr. Moliner 50, 46100 Burjassot.Valencia Spain.

Department of Analytical Chemistry, Faculty of Chemistry, Universitat de València, C/ Dr. Moliner 50, 46100 Burjassot.Valencia Spain.

出版信息

Anal Chim Acta. 2024 Sep 1;1320:343019. doi: 10.1016/j.aca.2024.343019. Epub 2024 Jul 25.

Abstract

BACKGROUND

Enhancing the quality control of medicinal plants is a complex challenge due to their rich variety of chemical compounds present at varying and extreme concentrations. Chromatographic fingerprints, which have become essential for characterising these complex natural materials, require achieving optimal separation conditions to effectively maximise the number of detected peaks. The challenges in optimising fingerprints and other complex multi-analyte samples include the unavailability of standards, the presence of unknown constituents and the substantial workload that would require conventional optimisation methods based on models.

RESULTS

This work introduces an interpretive optimisation approach which operates on the premise of predicting chromatograms using global models. Initially, a multi-linear gradient experimental design is sequentially executed to accommodate all peaks in the chromatogram in an adequate time window. Following this, a small set of sample peaks (reference peaks) is selected based on their consistent traceability across all chromatograms in the design. Using this reference dataset, a global model is constructed, initially focused solely on the reference peaks and later extended to encompass all detected peaks in the sample. The aim is to find gradients that maximise resolution while minimising analysis time. These optimised gradients are applied successfully to enhance the separation of medicinal plant extracts, with particular emphasis on peppermint and pennyroyal extracts.

SIGNIFICANCE

The proposed optimisation relying on global models can be applied to highly complex samples even in the absence of standards, or in cases where standards are available but their use is impractical due to workload constraints. Moreover, in discerning the most promising gradients for highly complex samples, peak purity has demonstrated superior reliability and competitiveness compared to peak capacity as chromatographic objective function.

摘要

背景

由于药用植物中存在着丰富多样的化合物,其浓度也存在着显著差异和极端变化,因此增强药用植物的质量控制是一项复杂的挑战。色谱指纹图谱对于这些复杂天然物质的特征描述至关重要,需要达到最佳的分离条件,以有效地最大限度地增加检测到的峰数。优化指纹图谱和其他复杂多分析物样品的挑战包括标准品的不可用性、未知成分的存在以及需要大量工作量,而传统基于模型的优化方法无法胜任。

结果

这项工作介绍了一种解释性优化方法,该方法基于使用全局模型预测色谱图的前提。首先,顺序执行多线性梯度实验设计,以便在足够的时间窗口内容纳色谱图中的所有峰。在此之后,根据其在设计中所有色谱图中的可追溯性,选择一小部分样品峰(参考峰)。使用这个参考数据集,构建一个全局模型,最初仅关注参考峰,然后扩展到包括样品中所有检测到的峰。目的是找到既能最大限度地提高分辨率又能最小化分析时间的梯度。这些优化的梯度成功地应用于增强药用植物提取物的分离,特别是薄荷和香桃木提取物。

意义

所提出的优化方法依赖于全局模型,可以应用于高度复杂的样品,即使在没有标准品的情况下,或者在有标准品但由于工作量限制而不实际使用的情况下。此外,在辨别高度复杂样品中最有前途的梯度时,与作为色谱目标函数的峰容量相比,峰纯度显示出更高的可靠性和竞争力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验