Sengupta Rudrarup, Khand Heena, Sarusi Gabby
Department of Photonics and Electro-Optics Engineering, School of Electrical and Computer Engineering, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel.
ACS Appl Mater Interfaces. 2024 Aug 28;16(34):45107-45118. doi: 10.1021/acsami.4c06187. Epub 2024 Aug 14.
This work presents a new method for the enhancement of sensitivity in Terahertz (THz) spectroscopy on metamaterial (MM) in terms of its resonance frequency shift (Δ), by attaching the dielectric back plate to the MM's silicon (Si) wafer. The dielectric back plates are designed to minimize the Fresnel reflections at the backside of the substrate, identical to a broadband antireflective (AR) plate tailored for THz. Utilizing broadband AR technology, we demonstrate the concept of decoupling MM resonance from the substrate's Fabry-Pérot (FP) oscillations. This is done by effectively coupling the THz light out of the high-permittivity substrate, resulting in the improved quality factor of the MM resonance and overall plasmonic enhancement on the metasurface. The back plate acts as a surface plasmonic enhancer to the THz MM by increasing the field intensity on the front metasurface, leading to enhancement of dielectric response (MM's Δ). This makes the MM resonance ultrasensitive to the minor changes of particle size/concentration under test spread on the metasurface, contributing to enhanced resonance Δ. The plate also makes the Si substrate optically lossless, enabling the full effect of MM resonance shift and increasing the resonance Δ by 8-fold compared with MM's fabricated on conventional Si substrates. This research is backed-up with system-level CST simulations and experimental THz impedance spectroscopy of the MM. This method and chip structure is CMOS compatible having potential applications for any resonant MM fabricated on a substrate aimed to maximize dielectric sensitivity for biosensing and nanoparticle THz spectroscopy.
这项工作提出了一种新方法,通过将介电背板附着到超材料(MM)的硅(Si)晶片上,以其共振频率偏移(Δ)来提高太赫兹(THz)光谱中超材料的灵敏度。介电背板的设计旨在最小化衬底背面的菲涅尔反射,这与为太赫兹量身定制的宽带抗反射(AR)板相同。利用宽带抗反射技术,我们展示了将超材料共振与衬底的法布里 - 珀罗(FP)振荡解耦的概念。这是通过有效地将太赫兹光从高介电常数衬底中耦合出来实现 的,从而提高了超材料共振的品质因数以及超表面上的整体等离子体增强。背板通过增加前超表面上的场强,充当太赫兹超材料的表面等离子体增强器,从而导致介电响应(超材料的Δ)增强。这使得超材料共振对分布在超表面上的被测颗粒尺寸/浓度的微小变化极其敏感,有助于增强共振Δ。该板还使硅衬底在光学上无损,实现了超材料共振偏移的全部效果,并且与在传统硅衬底上制造的超材料相比,共振Δ增加了8倍。这项研究得到了系统级CST模拟和超材料的太赫兹阻抗光谱实验 的支持。这种方法和芯片结构与CMOS兼容,对于旨在最大化生物传感和纳米颗粒太赫兹光谱介电灵敏度的、在衬底上制造的任何共振超材料具有潜在应用。