Suppr超能文献

基于移位分布估计策略增强爬虫搜索算法以实现无线传感器网络覆盖优化

Enhancing Reptile search algorithm with shifted distribution estimation strategy for coverage optimization in wireless sensor networks.

作者信息

Ma Na, Wang Shouxin, Hao Shuailing

机构信息

Research Institute of China Telecom, 102209, Beijing, China.

China Satellite Communications Co., Ltd, 100190, Beijing, China.

出版信息

Heliyon. 2024 Jul 10;10(15):e34455. doi: 10.1016/j.heliyon.2024.e34455. eCollection 2024 Aug 15.

Abstract

The rapid development of the Internet of Things (IoT) has extensively promoted the development of Wireless Sensor Networks (WSNs), an essential technology for series displaying perception and data collected from the physical world. In densely distributed areas, sensor nodes are unevenly distributed, which leads to the network coverage build-up and the consequent efficiency and effectiveness of WSNs. To address this issue, this paper proposes a new method for WSN coverage optimization based on the Reptile Search Algorithm (RSA). In the past, the Reptile Search algorithm has been used to solve optimization problems, which means it can improve different processes. However, the RSA needs to track the trajectory of optimal individuals in each iteration, which will ignore non-optimal individuals' bioeconomic characteristics. Therefore, the paper introduces a distribution estimation strategy into the RSA framework, which can fully mine all the positional information hidden in the entire population. We selected several functions as optimization test benchmark functions to evaluate the feasibility of the proposed method. This paper compares the proposed improved RSA with the standard RSA and some traditional optimization algorithms. The result has been calculated through a series of experiments on network coverage optimization, and the change of parameters also determines the effect of the RSA in the optimization of network coverage. The simulated results of the three similar network coverage optimization experiments show that the improved RSA can be used efficiently within different scenarios.

摘要

物联网(IoT)的快速发展极大地推动了无线传感器网络(WSN)的发展,无线传感器网络是一种用于串行显示从物理世界收集的感知和数据的关键技术。在密集分布区域,传感器节点分布不均,这会导致网络覆盖的形成以及无线传感器网络随之而来的效率和效能问题。为了解决这个问题,本文提出了一种基于爬行动物搜索算法(RSA)的无线传感器网络覆盖优化新方法。过去,爬行动物搜索算法已被用于解决优化问题,这意味着它可以改进不同的过程。然而,爬行动物搜索算法在每次迭代中都需要跟踪最优个体的轨迹,这会忽略非最优个体的生物经济特征。因此,本文将分布估计策略引入到爬行动物搜索算法框架中,该策略可以充分挖掘隐藏在整个种群中的所有位置信息。我们选择了几个函数作为优化测试基准函数来评估所提方法的可行性。本文将所提出的改进型爬行动物搜索算法与标准爬行动物搜索算法以及一些传统优化算法进行了比较。通过一系列关于网络覆盖优化的实验计算了结果,并且参数的变化也决定了爬行动物搜索算法在网络覆盖优化中的效果。三个类似网络覆盖优化实验的模拟结果表明,改进型爬行动物搜索算法可以在不同场景下高效使用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/895b/11320141/d7bcbf4f762b/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验