Suppr超能文献

具有双增强稳定界面的原位聚合高压固态锂金属电池

In-Situ Polymerized High-Voltage Solid-State Lithium Metal Batteries with Dual-Reinforced Stable Interfaces.

作者信息

Lv Qiang, Li Cheng, Liu Yue, Jing Yutong, Sun Jianguo, Wang Haimei, Wang Lei, Ren Huaizheng, Wu Bochen, Cheng Tao, Wang Dianlong, Liu Huakun, Dou Shi-Xue, Wang Bo, Wang John

机构信息

MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.

Department of Materials Science and Engineering, National University of Singapore, Singapore 117574, Republic of Singapore.

出版信息

ACS Nano. 2024 Aug 27;18(34):23253-23264. doi: 10.1021/acsnano.4c06057. Epub 2024 Aug 15.

Abstract

Solid polymer electrolytes (SPEs) represent a pivotal advance toward high-energy solid-state lithium metal batteries. However, inadequate interfacial contact remains a significant bottleneck, impeding scalability and application. Inadequate interfacial contact remains a significant bottleneck, impeding scalability and application. Recent efforts have focused on transforming liquid/solid interfaces into solid/solid ones through in situ polymerization, which shows potential especially in reducing interface impedance. Here, we designed high-voltage SSLMBs with dual-reinforced stable interfaces by combining interface modification with an in situ polymerization technology inspired by targeted effects in medicine. Theoretical calculations and time-of-flight secondary ion mass spectrometry (TOF-SIMS) analysis demonstrate that tetramethylene sulfone (TMS) and bis(2,2,2-trifluoromethyl) carbonate (TFEC) exhibit selective adsorption at the interface of the LiNiCoMnO (NCM) cathode and Li anode, respectively. These compounds further decompose to form a stable cathode-electrolyte interface (CEI) film and a solid electrolyte interface (SEI) film, thereby simultaneously achieving a superior interface between the SPE and both the Li anode and NCM cathode. The developed Li||SPE||Li cell sustained cycling for more than 1000 h at 0.3 mA cm, and the NCM||SPE||Li cell also demonstrated an excellent capacity retention of 86.8% after 1000 cycles at 1 °C. This work will provide valuable insights for the rational design of high-voltage SSLMBs with stable interfaces, leveraging in situ polymerization as a cornerstone technology.

摘要

固态聚合物电解质(SPEs)是高能固态锂金属电池发展的关键一步。然而,界面接触不足仍然是一个重大瓶颈,阻碍了其规模化生产和应用。界面接触不足仍然是一个重大瓶颈,阻碍了其规模化生产和应用。最近的研究致力于通过原位聚合将液/固界面转变为固/固界面,这在降低界面阻抗方面显示出了潜力。在此,我们结合界面修饰和受医学靶向效应启发的原位聚合技术,设计了具有双增强稳定界面的高压固态锂金属电池。理论计算和飞行时间二次离子质谱(TOF-SIMS)分析表明,四亚甲基砜(TMS)和双(2,2,2-三氟甲基)碳酸酯(TFEC)分别在LiNiCoMnO(NCM)正极和Li负极的界面处表现出选择性吸附。这些化合物进一步分解形成稳定的正极-电解质界面(CEI)膜和固体电解质界面(SEI)膜,从而同时在SPE与Li负极和NCM正极之间实现优异的界面。所开发的Li||SPE||Li电池在0.3 mA cm下可持续循环超过1000小时,NCM||SPE||Li电池在1°C下经过1000次循环后也表现出86.8%的优异容量保持率。这项工作将为利用原位聚合作为基石技术合理设计具有稳定界面的高压固态锂金属电池提供有价值的见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验