Maurer Jack, Albrecht Claire S, Herbert Patrick, Heussman Dylan, Chang Anabel, von Hippel Peter H, Marcus Andrew H
Center for Optical, Molecular and Quantum Science, Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403.
Institute of Molecular Biology, Department of Chemistry and Biochemistry, and University of Oregon, Eugene, Oregon 97403.
Proc SPIE Int Soc Opt Eng. 2024 Jan-Feb;12863. doi: 10.1117/12.3001962. Epub 2024 Mar 13.
Local fluctuations of the sugar-phosphate backbones and bases of DNA (a form of DNA 'breathing') play a central role in the assembly of protein-DNA complexes. We present a single-molecule fluorescence method to sensitively measure the local conformational fluctuations of exciton-coupled cyanine [(iCy3)] dimer-labeled DNA fork constructs in which the dimer probes are placed at varying positions relative to the DNA fork junction. These systems exhibit spectroscopic signals that are sensitive to the local conformations adopted by the sugar-phosphate backbones and bases immediately surrounding the dimer probe label positions. The (iCy3) dimer has one symmetric (+) and one anti-symmetric (-) exciton with respective transition dipole moments oriented perpendicular to one another. We excite single molecule samples using a continuous-wave, linearly polarized laser with its polarization direction rotated at a frequency of 1 MHz. The ensuing fluorescence signal is modulated as the laser polarization alternately excites the symmetric and anti-symmetric excitons of the (iCy3) dimer probe. Phase-sensitive detection of the signal at the photon-counting level provides information about the distribution of local conformations and conformational dynamics. We analyze our data using a kinetic network model, which we use to parametrize the free energy surface of the system. In addition to observing DNA breathing at and near ss-dsDNA junctions, the approach can be used to study the effects of proteins that bind and function at these sites.
DNA糖磷酸骨架和碱基的局部波动(一种DNA“呼吸”形式)在蛋白质-DNA复合物的组装中起着核心作用。我们提出了一种单分子荧光方法,用于灵敏地测量激子耦合花菁[(iCy3)]二聚体标记的DNA叉状结构的局部构象波动,其中二聚体探针相对于DNA叉状连接点放置在不同位置。这些系统表现出对紧邻二聚体探针标记位置的糖磷酸骨架和碱基所采用的局部构象敏感的光谱信号。(iCy3)二聚体具有一个对称(+)激子和一个反对称(-)激子,其各自的跃迁偶极矩相互垂直。我们使用连续波、线偏振激光以1 MHz的频率旋转其偏振方向来激发单分子样品。随着激光偏振交替激发(iCy3)二聚体探针的对称和反对称激子,随之产生的荧光信号被调制。在光子计数水平对信号进行相敏检测可提供有关局部构象分布和构象动力学的信息。我们使用动力学网络模型分析数据,该模型用于对系统的自由能表面进行参数化。除了观察单链-双链DNA连接处及其附近的DNA呼吸外,该方法还可用于研究在这些位点结合并起作用的蛋白质的影响。