Chen Kai, Tang Yanping, Zhang Shuqing, Hao Xuxia, Zhao Xiaoning, Cheng Li-Qian, Xiao Youxuan, Wen Zhaoyin
QingTao (Kunshan) Energy Development Co., Ltd., Suzhou 215334, China.
CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences (SICCAS), Shanghai 200050, China.
ACS Appl Mater Interfaces. 2024 Aug 28;16(34):45459-45472. doi: 10.1021/acsami.4c08319. Epub 2024 Aug 17.
Sulfide all-solid-state lithium battery (ASSLB) with nickel-rich layered oxide as the cathode is promising for next-generation energy storage system. However, the Li transport dynamic and stability in ASSLB are hindered by the structural mismatches and the instabilities especially at the oxide cathode/sulfide solid electrolyte (SE) interface. In this work, we have demonstrated a simple and highly effective solid-state mechanofusion method (1500 rpm for 10 min) to combine lithium conductive NASICON-type LiZr(PO) nanocrystals (∼20 nm) uniformly and compactly onto the surface of the single crystallized LiNiCoMnO, which can also attractively achieve Zr doping in NCM811 and oxygen vacancies in the LZPO coating without solvent and annealing. Benefiting from the alleviated interface mismatches, sufficient Li ion flux through the LZPO coating, promoted structural stabilities for both NCM811 and sulfide SE, strong electronic coupling effect between the LZPO and NCM811, and enlarged (003) -spacing with enriched Li migration channels in NCM811, the obtained LZPO-NCM811 exhibits superior stability (185 mAh/g at 0.1C for 200 cycles) and rate performance (105 mAh/g at 1C for 1300 cycles) with high mass loading of 27 mg/cm in sulfide ASSLB. Even with a pronounced 54 mg/cm, LZPO-NCM811 manifests a high areal capacity of 9.85 mAh/cm. The convenient and highly effective interface engineering strategy paves the way to large-scale production of various coated cathode materials with synergistic effects for high performance ASSLBs.
以富镍层状氧化物为正极的硫化物全固态锂电池(ASSLB)在下一代储能系统中具有广阔前景。然而,ASSLB中的锂传输动力学和稳定性受到结构不匹配以及不稳定性的阻碍,尤其是在氧化物正极/硫化物固体电解质(SE)界面处。在这项工作中,我们展示了一种简单且高效的固态机械融合方法(1500转/分钟,持续10分钟),将锂导电的NASICON型LiZr(PO)纳米晶体(约20纳米)均匀且紧密地结合在单晶LiNiCoMnO表面,这还能在无溶剂和退火的情况下,在NCM811中实现Zr掺杂以及在LZPO涂层中引入氧空位。得益于界面不匹配的缓解、通过LZPO涂层的充足锂离子通量、NCM811和硫化物SE结构稳定性的提升、LZPO与NCM811之间强大的电子耦合效应以及NCM811中(003)面间距增大且锂迁移通道丰富,所制备的LZPO-NCM811在硫化物ASSLB中表现出优异的稳定性(0.1C下200次循环时为185 mAh/g)和倍率性能(1C下1300次循环时为105 mAh/g),高质量负载为27 mg/cm 。即使在高达54 mg/cm的情况下,LZPO-NCM811仍表现出9.85 mAh/cm的高面积容量。这种便捷且高效的界面工程策略为大规模生产具有协同效应的各种涂层正极材料以用于高性能ASSLB铺平了道路。