Suppr超能文献

人工智能在个性化视网膜疾病管理中的应用

Artificial intelligence in individualized retinal disease management.

作者信息

Zhang Zi-Ran, Li Jia-Jun, Li Ke-Ran

机构信息

The Affiliated Eye Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China.

Nanjing Medical University, Nanjing 210029, Jiangsu Province, China.

出版信息

Int J Ophthalmol. 2024 Aug 18;17(8):1519-1530. doi: 10.18240/ijo.2024.08.19. eCollection 2024.

Abstract

Owing to the rapid development of modern computer technologies, artificial intelligence (AI) has emerged as an essential instrument for intelligent analysis across a range of fields. AI has been proven to be highly effective in ophthalmology, where it is frequently used for identifying, diagnosing, and typing retinal diseases. An increasing number of researchers have begun to comprehensively map patients' retinal diseases using AI, which has made individualized clinical prediction and treatment possible. These include prognostic improvement, risk prediction, progression assessment, and interventional therapies for retinal diseases. Researchers have used a range of input data methods to increase the accuracy and dependability of the results, including the use of tabular, textual, or image-based input data. They also combined the analyses of multiple types of input data. To give ophthalmologists access to precise, individualized, and high-quality treatment strategies that will further optimize treatment outcomes, this review summarizes the latest findings in AI research related to the prediction and guidance of clinical diagnosis and treatment of retinal diseases.

摘要

由于现代计算机技术的快速发展,人工智能(AI)已成为跨领域智能分析的重要工具。人工智能在眼科领域已被证明非常有效,常用于识别、诊断和分类视网膜疾病。越来越多的研究人员开始使用人工智能全面绘制患者的视网膜疾病图谱,这使得个性化的临床预测和治疗成为可能。这些包括视网膜疾病的预后改善、风险预测、病情进展评估和介入治疗。研究人员使用了一系列输入数据方法来提高结果的准确性和可靠性,包括使用表格、文本或基于图像的输入数据。他们还结合了多种类型输入数据的分析。为了让眼科医生能够获得精确、个性化和高质量的治疗策略,从而进一步优化治疗效果,本综述总结了人工智能研究中与视网膜疾病临床诊断和治疗的预测及指导相关的最新发现。

相似文献

1
Artificial intelligence in individualized retinal disease management.
Int J Ophthalmol. 2024 Aug 18;17(8):1519-1530. doi: 10.18240/ijo.2024.08.19. eCollection 2024.
2
[The application potential and direction of artificial intelligence in the prevention and treatment of glaucoma].
Zhonghua Yan Ke Za Zhi. 2023 Sep 11;59(9):691-695. doi: 10.3760/cma.j.cn112142-20230519-00204.
3
Embryo selection through artificial intelligence versus embryologists: a systematic review.
Hum Reprod Open. 2023 Aug 15;2023(3):hoad031. doi: 10.1093/hropen/hoad031. eCollection 2023.
5
Artificial intelligence in retinal imaging: current status and future prospects.
Expert Rev Med Devices. 2024 Jan-Feb;21(1-2):73-89. doi: 10.1080/17434440.2023.2294364. Epub 2024 Feb 4.
6
Artificial intelligence and deep learning in ophthalmology - present and future (Review).
Exp Ther Med. 2020 Oct;20(4):3469-3473. doi: 10.3892/etm.2020.9118. Epub 2020 Aug 12.
9
Application of Artificial Intelligence in Targeting Retinal Diseases.
Curr Drug Targets. 2020;21(12):1208-1215. doi: 10.2174/1389450121666200708120646.
10
Artificial intelligence: A joint narrative on potential use in pediatric stem and immune cell therapies and regenerative medicine.
Transfus Apher Sci. 2018 Jun;57(3):422-424. doi: 10.1016/j.transci.2018.05.004. Epub 2018 May 9.

本文引用的文献

1
A deep learning system for predicting time to progression of diabetic retinopathy.
Nat Med. 2024 Feb;30(2):584-594. doi: 10.1038/s41591-023-02702-z. Epub 2024 Jan 4.
2
Investigational drugs inhibiting complement for the treatment of geographic atrophy.
Expert Opin Investig Drugs. 2023 Jul-Dec;32(11):1009-1016. doi: 10.1080/13543784.2023.2276759. Epub 2023 Nov 24.
3
Artificial intelligence in ophthalmology.
Rom J Ophthalmol. 2023 Jul-Sep;67(3):207-213. doi: 10.22336/rjo.2023.37.
4
Research progress in artificial intelligence assisted diabetic retinopathy diagnosis.
Int J Ophthalmol. 2023 Sep 18;16(9):1395-1405. doi: 10.18240/ijo.2023.09.05. eCollection 2023.
5
Guidelines on clinical research evaluation of artificial intelligence in ophthalmology (2023).
Int J Ophthalmol. 2023 Sep 18;16(9):1361-1372. doi: 10.18240/ijo.2023.09.02. eCollection 2023.
6
Bibliometric analysis of artificial intelligence and optical coherence tomography images: research hotspots and frontiers.
Int J Ophthalmol. 2023 Sep 18;16(9):1431-1440. doi: 10.18240/ijo.2023.09.09. eCollection 2023.
7
Artificial intelligence in ophthalmology.
Int J Ophthalmol. 2023 Sep 18;16(9):1357-1360. doi: 10.18240/ijo.2023.09.01. eCollection 2023.
8
Current Treatments for Diabetic Macular Edema.
Int J Mol Sci. 2023 May 31;24(11):9591. doi: 10.3390/ijms24119591.
9
Meta-Analyses of Two Treatment Regimens for Retinal Vein Occlusion.
Ophthalmic Surg Lasers Imaging Retina. 2023 Apr;54(4):244-250. doi: 10.3928/23258160-20230320-01. Epub 2023 Apr 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验