文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

人工智能在个性化视网膜疾病管理中的应用

Artificial intelligence in individualized retinal disease management.

作者信息

Zhang Zi-Ran, Li Jia-Jun, Li Ke-Ran

机构信息

The Affiliated Eye Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China.

Nanjing Medical University, Nanjing 210029, Jiangsu Province, China.

出版信息

Int J Ophthalmol. 2024 Aug 18;17(8):1519-1530. doi: 10.18240/ijo.2024.08.19. eCollection 2024.


DOI:10.18240/ijo.2024.08.19
PMID:39156787
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11286449/
Abstract

Owing to the rapid development of modern computer technologies, artificial intelligence (AI) has emerged as an essential instrument for intelligent analysis across a range of fields. AI has been proven to be highly effective in ophthalmology, where it is frequently used for identifying, diagnosing, and typing retinal diseases. An increasing number of researchers have begun to comprehensively map patients' retinal diseases using AI, which has made individualized clinical prediction and treatment possible. These include prognostic improvement, risk prediction, progression assessment, and interventional therapies for retinal diseases. Researchers have used a range of input data methods to increase the accuracy and dependability of the results, including the use of tabular, textual, or image-based input data. They also combined the analyses of multiple types of input data. To give ophthalmologists access to precise, individualized, and high-quality treatment strategies that will further optimize treatment outcomes, this review summarizes the latest findings in AI research related to the prediction and guidance of clinical diagnosis and treatment of retinal diseases.

摘要

由于现代计算机技术的快速发展,人工智能(AI)已成为跨领域智能分析的重要工具。人工智能在眼科领域已被证明非常有效,常用于识别、诊断和分类视网膜疾病。越来越多的研究人员开始使用人工智能全面绘制患者的视网膜疾病图谱,这使得个性化的临床预测和治疗成为可能。这些包括视网膜疾病的预后改善、风险预测、病情进展评估和介入治疗。研究人员使用了一系列输入数据方法来提高结果的准确性和可靠性,包括使用表格、文本或基于图像的输入数据。他们还结合了多种类型输入数据的分析。为了让眼科医生能够获得精确、个性化和高质量的治疗策略,从而进一步优化治疗效果,本综述总结了人工智能研究中与视网膜疾病临床诊断和治疗的预测及指导相关的最新发现。

相似文献

[1]
Artificial intelligence in individualized retinal disease management.

Int J Ophthalmol. 2024-8-18

[2]
[The application potential and direction of artificial intelligence in the prevention and treatment of glaucoma].

Zhonghua Yan Ke Za Zhi. 2023-9-11

[3]
Embryo selection through artificial intelligence versus embryologists: a systematic review.

Hum Reprod Open. 2023-8-15

[4]
Current status and practical considerations of artificial intelligence use in screening and diagnosing retinal diseases: Vision Academy retinal expert consensus.

Curr Opin Ophthalmol. 2023-9-1

[5]
Artificial intelligence in retinal imaging: current status and future prospects.

Expert Rev Med Devices. 2024

[6]
Artificial intelligence and deep learning in ophthalmology - present and future (Review).

Exp Ther Med. 2020-10

[7]
Developing and Evaluating an AI-Based Computer-Aided Diagnosis System for Retinal Disease: Diagnostic Study for Central Serous Chorioretinopathy.

J Med Internet Res. 2023-11-29

[8]
Teleophthalmology-enabled and artificial intelligence-ready referral pathway for community optometry referrals of retinal disease (HERMES): a Cluster Randomised Superiority Trial with a linked Diagnostic Accuracy Study-HERMES study report 1-study protocol.

BMJ Open. 2022-2-1

[9]
Application of Artificial Intelligence in Targeting Retinal Diseases.

Curr Drug Targets. 2020

[10]
Artificial intelligence: A joint narrative on potential use in pediatric stem and immune cell therapies and regenerative medicine.

Transfus Apher Sci. 2018-6

本文引用的文献

[1]
A deep learning system for predicting time to progression of diabetic retinopathy.

Nat Med. 2024-2

[2]
Investigational drugs inhibiting complement for the treatment of geographic atrophy.

Expert Opin Investig Drugs. 2023

[3]
Artificial intelligence in ophthalmology.

Rom J Ophthalmol. 2023

[4]
Research progress in artificial intelligence assisted diabetic retinopathy diagnosis.

Int J Ophthalmol. 2023-9-18

[5]
Guidelines on clinical research evaluation of artificial intelligence in ophthalmology (2023).

Int J Ophthalmol. 2023-9-18

[6]
Bibliometric analysis of artificial intelligence and optical coherence tomography images: research hotspots and frontiers.

Int J Ophthalmol. 2023-9-18

[7]
Artificial intelligence in ophthalmology.

Int J Ophthalmol. 2023-9-18

[8]
Current Treatments for Diabetic Macular Edema.

Int J Mol Sci. 2023-5-31

[9]
Meta-Analyses of Two Treatment Regimens for Retinal Vein Occlusion.

Ophthalmic Surg Lasers Imaging Retina. 2023-4

[10]
The cause of redetachment after vitrectomy with air tamponade for a cohort of 1715 patients with retinal detachment: an analysis of retinal breaks reopening.

Eye Vis (Lond). 2023-2-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索