Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway.
Department Department of Biology, University of Padova, Padova, Italy.
Food Res Int. 2024 Oct;193:114862. doi: 10.1016/j.foodres.2024.114862. Epub 2024 Aug 2.
This study explores the biological mechanisms behind colour changes in white wine fermentation using different strains of Starmerella bacillaris. We combined food engineering, genomics, machine learning, and physicochemical analyses to examine interactions between S. bacillaris and Saccharomyces cerevisiae. Significant differences in total polyphenol content were observed, with S. bacillaris fermentation yielding 6 % higher polyphenol content compared to S. cerevisiae EC1118. Genomic analysis identified 12 genes in S. bacillaris with high variant counts that could impact phenotypic properties related to wine color. Notably, SNP analysis revealed numerous missense and synonymous variants, as well as stop-gained and start-lost variants between PAS13 and FRI751, suggesting changes in metabolic pathways affecting pigment production. Besides that, high upstream gene variants in SSK1 and HIP1R indicated potential regulatory changes influencing gene expression. Fermentation trials revealed FRI751 consistently showed high antioxidant activity and polyphenol content (Total Polyphenol: 299.33 ± 3.51 mg GAE/L, DPPH: 1.09 ± 0.01 mmol TE/L, FRAP: 0.95 ± 0.02 mmol TE/L). PAS13 exhibited a balanced profile, while EC1118 had lower values, indicating moderate antioxidant activity. The Weibull model effectively captured nitrogen consumption dynamics, with EC1118 serving as a reliable benchmark. The scale parameter delta for EC1118 was 23.04 ± 2.63, indicating moderate variability in event times. These findings highlight S. bacillaris as a valuable component in sustainable winemaking, offering an alternative to chemical additives for maintaining wine quality and enhancing colours profiles. This study provides insights into the biotechnological and fermented food systems applications of yeast strains in improving food sustainability and supply chain, opening new avenues in food engineering and microbiology.
本研究利用不同的巴斯德毕赤酵母(Starmerella bacillaris)菌株,探索白葡萄酒发酵中颜色变化的生物学机制。我们结合食品工程、基因组学、机器学习和物理化学分析,研究巴斯德毕赤酵母(S. bacillaris)和酿酒酵母(Saccharomyces cerevisiae)之间的相互作用。结果发现总多酚含量存在显著差异,与 S. cerevisiae EC1118 相比,S. bacillaris 发酵的多酚含量高 6%。基因组分析鉴定出 S. bacillaris 中 12 个具有高变异计数的基因,这些基因可能影响与葡萄酒颜色相关的表型特性。值得注意的是,SNP 分析显示 PAS13 和 FRI751 之间存在大量错义和同义变异,以及停止增益和起始丢失变异,表明代谢途径的变化影响色素的产生。此外,SSK1 和 HIP1R 上游基因的高变体表明潜在的调控变化可能影响基因表达。发酵试验表明,FRI751 始终表现出较高的抗氧化活性和多酚含量(总多酚:299.33±3.51mg GAE/L,DPPH:1.09±0.01mmol TE/L,FRAP:0.95±0.02mmol TE/L)。PAS13 表现出平衡的特征,而 EC1118 的值较低,表明抗氧化活性中等。Weibull 模型有效地捕捉了氮消耗动态,EC1118 作为可靠的基准。EC1118 的尺度参数 delta 为 23.04±2.63,表明事件时间的可变性中等。这些发现突显了巴斯德毕赤酵母(S. bacillaris)作为可持续酿酒的有价值成分,为维持葡萄酒质量和增强颜色特征提供了一种替代化学添加剂的方法。本研究为酵母菌株在改善食品可持续性和供应链方面的生物技术和发酵食品系统应用提供了新的见解,为食品工程和微生物学开辟了新的途径。