Suppr超能文献

某些反铁磁模型的杨-李零点

Yang-Lee zeros of certain antiferromagnetic models.

作者信息

Sedik Muhammad, Bhat Junaid Majeed, Dhar Abhishek, Shastry B Sriram

机构信息

Physics Department, <a href="https://ror.org/03s65by71">University of California, Santa Cruz</a>, California 95064, USA.

<a href="https://ror.org/0015qa126">International Centre for Theoretical Sciences</a>, Tata Institute of Fundamental Research, Bengaluru 560 089, India.

出版信息

Phys Rev E. 2024 Jul;110(1-1):014117. doi: 10.1103/PhysRevE.110.014117.

Abstract

We revisit the somewhat less studied problem of Yang-Lee zeros of the Ising antiferromagnet. For this purpose, we study two models, the nearest-neighbor model on a square lattice and the more tractable mean-field model corresponding to infinite-ranged coupling between all sites. In the high-temperature limit, we show that the logarithm of the Yang-Lee zeros can be written as a series in half odd integer powers of the inverse temperature, k, with the leading term ∼k^{1/2}. This result is true in any dimension and for arbitrary lattices. We also show that the coefficients of the expansion satisfy simple identities (akin to sum rules) for the nearest-neighbor case. These identities are verified numerically by computing the exact partition function for a two-dimensional square lattice of size 16×16. For the mean-field model, we write down the partition function (termed the mean-field polynomials) for the ferromagnetic (FM) and antiferromagnetic (AFM) cases and derive from them the mean-field equations. We analytically show that at high temperatures the zeros of the AFM mean-field polynomial scale as ∼k^{1/2} as well. Using a simple numerical method, we find the roots lie on certain curves (the root curves), in the thermodynamic limit for the mean-field polynomials for the AFM case as well as for the FM one. Our results show a new root curve that was not found earlier. Our results also clearly illustrate the phase transition expected for the FM and AFM cases, in the language of Yang-Lee zeros. Moreover, for the AFM case, we observe that the root curves separate two distinct phases of zero and nonzero complex staggered magnetization, and thus depict a complex phase boundary.

摘要

我们重新审视伊辛反铁磁体的杨 - 李零点这个研究相对较少的问题。为此,我们研究了两个模型,一个是正方形晶格上的最近邻模型,另一个是更易于处理的平均场模型,它对应于所有格点之间的无穷程耦合。在高温极限下,我们表明杨 - 李零点的对数可以写成逆温度(k)的半奇数整数幂的级数形式,首项为(\sim k^{1/2})。这个结果在任何维度和任意晶格中都成立。我们还表明,对于最近邻情况,展开式的系数满足简单的恒等式(类似于求和规则)。通过计算(16×16)二维正方形晶格的精确配分函数,对这些恒等式进行了数值验证。对于平均场模型,我们写出了铁磁(FM)和反铁磁(AFM)情况下的配分函数(称为平均场多项式),并从中导出了平均场方程。我们通过分析表明,在高温下,AFM平均场多项式的零点也按(\sim k^{1/2})缩放。使用一种简单的数值方法,我们发现对于AFM情况以及FM情况的平均场多项式,在热力学极限下,根位于某些曲线上(根曲线)。我们的结果显示了一条先前未发现的新根曲线。我们的结果还清楚地用杨 - 李零点的语言说明了FM和AFM情况下预期的相变。此外,对于AFM情况,我们观察到根曲线将零和非零复交错磁化强度的两个不同相分开分隔分开分隔开,从而描绘出一个复相边界。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验