Wei Luhan, Hu Yang, Huang Yiwei, Lu Ying, Xu Zihan, Zhang Nian, Lu Qiyang
Zhejiang University, Hangzhou, Zhejiang 310027, China.
School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China.
J Am Chem Soc. 2024 Aug 28;146(34):24167-24176. doi: 10.1021/jacs.4c09261. Epub 2024 Aug 20.
Redox-active transition metal oxides (TMOs) play crucial roles in diverse energy storage and conversion technologies, such as batteries and pseudocapacitors. These materials show intricate electrochemical charge storage processes, encompassing both bulk ion-intercalation, typical of battery electrodes, and pseudocapacitive-like behavior localized near the surfaces. However, understanding the underlying mechanisms of charge storage in redox-active TMOs is challenging due to the coexistence of these behaviors. In this study, we propose an integrated approach that combines electrochemical and optical techniques to disentangle the contributions of bulk and surface phenomena. Using birnessite δ-MnO as a model system, we account for surface pseudocapacitive-like layers and employ a refined model that incorporates both surface reactions and bulk chemical diffusion. This methodology allows us to extract essential kinetic parameters, establishing a fundamental framework for unraveling surface and bulk electrochemical processes. This advancement provides a valuable tool for the rational design of energy storage devices, enhancing our ability to tailor these materials for specific applications.
氧化还原活性过渡金属氧化物(TMOs)在多种能量存储和转换技术中发挥着关键作用,如电池和赝电容器。这些材料展现出复杂的电化学电荷存储过程,既包括典型电池电极的体相离子嵌入,也包括表面附近的类似赝电容行为。然而,由于这些行为的共存,理解氧化还原活性TMOs中电荷存储的潜在机制具有挑战性。在本研究中,我们提出一种综合方法,将电化学和光学技术相结合,以区分体相和表面现象的贡献。以水钠锰矿δ-MnO为模型体系,我们考虑了表面类似赝电容的层,并采用了一个结合表面反应和体相化学扩散的改进模型。这种方法使我们能够提取基本的动力学参数,为揭示表面和体相电化学过程建立了一个基本框架。这一进展为储能器件的合理设计提供了一个有价值的工具,增强了我们为特定应用定制这些材料的能力。