Translational Bioinformatics Group, International Center for Genetic Engineering and Biotechnology (ICGEB), New Delhi, 110067, India.
Mol Divers. 2024 Aug;28(4):2331-2344. doi: 10.1007/s11030-024-10960-3. Epub 2024 Aug 20.
Generative machine learning models offer a novel strategy for chemogenomics and de novo drug design, allowing researchers to streamline their exploration of the chemical space and concentrate on specific regions of interest. In cases with limited inhibitor data available for the target of interest, de novo drug design plays a crucial role. In this study, we utilized a package called 'mollib,' trained on ChEMBL data containing approximately 365,000 bioactive molecules. By leveraging transfer learning techniques with this package, we generated a series of compounds, starting from five initial compounds, which are potential Plasmodium falciparum (Pf) Lactate dehydrogenase inhibitors. The resulting compounds exhibit structural diversity and hold promise as potential novel Pf Lactate dehydrogenase inhibitors.
生成式机器学习模型为化学生物学和从头药物设计提供了一种新颖的策略,使研究人员能够简化对化学空间的探索,并专注于特定的感兴趣区域。在目标靶点的抑制剂数据有限的情况下,从头药物设计发挥着至关重要的作用。在这项研究中,我们利用了一个名为'mollib'的软件包,该软件包基于包含大约 36.5 万个生物活性分子的 ChEMBL 数据进行训练。通过利用该软件包的迁移学习技术,我们从五个初始化合物开始生成了一系列化合物,这些化合物可能是疟原虫乳酸脱氢酶抑制剂。所得化合物具有结构多样性,有望成为潜在的新型疟原虫乳酸脱氢酶抑制剂。