Suppr超能文献

基于机器学习生成的多样化化合物库设计新型疟原虫乳酸脱氢酶分子抑制剂。

Novel molecular inhibitor design for Plasmodium falciparum Lactate dehydrogenase enzyme using machine learning generated library of diverse compounds.

机构信息

Translational Bioinformatics Group, International Center for Genetic Engineering and Biotechnology (ICGEB), New Delhi, 110067, India.

出版信息

Mol Divers. 2024 Aug;28(4):2331-2344. doi: 10.1007/s11030-024-10960-3. Epub 2024 Aug 20.

Abstract

Generative machine learning models offer a novel strategy for chemogenomics and de novo drug design, allowing researchers to streamline their exploration of the chemical space and concentrate on specific regions of interest. In cases with limited inhibitor data available for the target of interest, de novo drug design plays a crucial role. In this study, we utilized a package called 'mollib,' trained on ChEMBL data containing approximately 365,000 bioactive molecules. By leveraging transfer learning techniques with this package, we generated a series of compounds, starting from five initial compounds, which are potential Plasmodium falciparum (Pf) Lactate dehydrogenase inhibitors. The resulting compounds exhibit structural diversity and hold promise as potential novel Pf Lactate dehydrogenase inhibitors.

摘要

生成式机器学习模型为化学生物学和从头药物设计提供了一种新颖的策略,使研究人员能够简化对化学空间的探索,并专注于特定的感兴趣区域。在目标靶点的抑制剂数据有限的情况下,从头药物设计发挥着至关重要的作用。在这项研究中,我们利用了一个名为'mollib'的软件包,该软件包基于包含大约 36.5 万个生物活性分子的 ChEMBL 数据进行训练。通过利用该软件包的迁移学习技术,我们从五个初始化合物开始生成了一系列化合物,这些化合物可能是疟原虫乳酸脱氢酶抑制剂。所得化合物具有结构多样性,有望成为潜在的新型疟原虫乳酸脱氢酶抑制剂。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验