Suppr超能文献

解析重症肌无力:红外光谱和机器学习的高级诊断。

Decoding myasthenia gravis: advanced diagnosis with infrared spectroscopy and machine learning.

机构信息

Department of Biophysics, Faculty of Medicine, Altinbas University, Istanbul, Türkiye.

Department of Physiology, Faculty of Medicine, Altinbas University, Istanbul, Türkiye.

出版信息

Sci Rep. 2024 Aug 20;14(1):19316. doi: 10.1038/s41598-024-66501-3.

Abstract

Myasthenia Gravis (MG) is a rare neurological disease. Although there are intensive efforts, the underlying mechanism of MG still has not been fully elucidated, and early diagnosis is still a question mark. Diagnostic paraclinical tests are also time-consuming, burden patients financially, and sometimes all test results can be negative. Therefore, rapid, cost-effective novel methods are essential for the early accurate diagnosis of MG. Here, we aimed to determine MG-induced spectral biomarkers from blood serum using infrared spectroscopy. Furthermore, infrared spectroscopy coupled with multivariate analysis methods e.g., principal component analysis (PCA), support vector machine (SVM), discriminant analysis and Neural Network Classifier were used for rapid MG diagnosis. The detailed spectral characterization studies revealed significant increases in lipid peroxidation; saturated lipid, protein, and DNA concentrations; protein phosphorylation; POasym + sym /protein and POsym/lipid ratios; as well as structural changes in protein with a significant decrease in lipid dynamics. All these spectral parameters can be used as biomarkers for MG diagnosis and also in MG therapy. Furthermore, MG was diagnosed with 100% accuracy, sensitivity and specificity values by infrared spectroscopy coupled with multivariate analysis methods. In conclusion, FTIR spectroscopy coupled with machine learning technology is advancing towards clinical translation as a rapid, low-cost, sensitive novel approach for MG diagnosis.

摘要

重症肌无力(MG)是一种罕见的神经疾病。尽管已经进行了深入的研究,但 MG 的潜在机制仍未完全阐明,早期诊断仍然是一个未知数。诊断性辅助检查也很耗时,给患者带来经济负担,而且有时所有检查结果都可能呈阴性。因此,快速、具有成本效益的新型方法对于 MG 的早期准确诊断至关重要。在这里,我们旨在使用红外光谱从血清中确定 MG 诱导的光谱生物标志物。此外,还使用了红外光谱结合多元分析方法,如主成分分析(PCA)、支持向量机(SVM)、判别分析和神经网络分类器,用于快速 MG 诊断。详细的光谱特征研究表明,脂质过氧化、饱和脂质、蛋白质和 DNA 浓度、蛋白质磷酸化、POasym+sym /protein 和 POsym/lipid 比值以及蛋白质结构变化显著增加,而脂质动力学则显著降低。所有这些光谱参数都可以用作 MG 诊断的生物标志物,也可以用于 MG 治疗。此外,红外光谱结合多元分析方法可以 100%准确、灵敏和特异地诊断 MG。总之,FTIR 光谱结合机器学习技术正在向临床转化,成为一种快速、低成本、敏感的 MG 诊断新方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4dd7/11336246/17a0342c8992/41598_2024_66501_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验