Li Hongpeng, Ding Jiabao, Song Zihao, Ding Shumei, Liu Xue, Wang Feihong, Shi Xinlei, Zhang Chao
College of Mechanical Engineering, Yangzhou University, Yangzhou, 225127, China.
College of Mechanical Engineering, Yangzhou University, Yangzhou, 225127, China.
Talanta. 2024 Dec 1;280:126713. doi: 10.1016/j.talanta.2024.126713. Epub 2024 Aug 15.
Metal-organic frameworks (MOFs) hold great promise as advanced chemical sensing materials due to their high surface area and tunable surface chemistry. However, due to the inherent conductivity, building a highly sensitive MOFs-based gas sensor for real-time monitoring hazardous gas operated at room temperature (RT) is still a huge challenge. Herein, an in-situ anchoring strategy is proposed to construct a 1D-0D core-shell heterostructure by integrating silver nanowires (AgNWs) with highly conductivity and Zn-MOF with high specific surface area. The incorporation of AgNWs establishes a highly conductive network architecture to facilitate rapid charge transport while preventing the Zn-MOF nanoparticles from agglomeration, ensuring an effective transmission highway for target gas molecules. Meanwhile, the Zn-MOF nanoparticles induce remarkable absorption capacity and contribute high gas response. By strategically amalgamating the inherent distinctive virtues of the individual components and capitalizing on the synergistic benefits arising from the composite, the sensors hinged upon the refined AgNWs@Zn-MOF (A@Z) heterostructure unveiled remarkable response value of 27 to 20 ppm ethanol at RT, accompanied by a low detection limit of 1 ppm. Moreover, the A@Z sensor further showcases superior selectivity and repeatability. This work offers a fresh standpoint for the fabrication of MOF-based heterostructures, fostering advancements in diverse applications.
金属有机框架材料(MOFs)因其高比表面积和可调控的表面化学性质,作为先进的化学传感材料具有巨大潜力。然而,由于其固有的导电性,构建一种用于室温实时监测有害气体的高灵敏度MOF基气体传感器仍然是一个巨大挑战。在此,我们提出一种原位锚定策略,通过将具有高导电性的银纳米线(AgNWs)与具有高比表面积的Zn-MOF相结合,构建一维-零维核壳异质结构。AgNWs的引入建立了一个高导电网络结构,促进电荷快速传输,同时防止Zn-MOF纳米颗粒团聚,确保目标气体分子有一条有效的传输通道。同时,Zn-MOF纳米颗粒具有显著的吸附能力,并贡献高气体响应。通过策略性地融合各组分固有的独特优点,并利用复合材料产生的协同效应,基于精制的AgNWs@Zn-MOF(A@Z)异质结构的传感器在室温下对20 ppm乙醇展现出27 的显著响应值,同时检测限低至1 ppm。此外,A@Z传感器还展现出卓越的选择性和重复性。这项工作为MOF基异质结构的制备提供了新视角,推动了其在各种应用中的进展。