LICIT-ECO7 UMR T9401, ENTPE, University Gustave Eiffel, Lyon, France.
Orange Innovation, Châtillon, France.
PLoS One. 2024 Aug 22;19(8):e0309093. doi: 10.1371/journal.pone.0309093. eCollection 2024.
Network Signalling Data (NSD) have the potential to provide continuous spatio-temporal information about the presence, mobility, and usage patterns of cell phone services by individuals. Such information is invaluable for monitoring large urban areas and supporting the implementation of decision-making services. When analyzed in real time, NSD can enable the early detection of critical urban events, including fires, large accidents, stampedes, terrorist attacks, and sports and leisure gatherings, especially if these events significantly impact mobile phone network activity in the affected areas. This paper presents empirical evidence that advanced NSD can detect anomalies in mobile traffic service consumption, attributable to critical urban events, with fine spatial (a spatial resolution of a few decameters) and temporal (minutes) resolutions. We introduce two methodologies for real-time anomaly detection from multivariate time series extracted from large-scale NSD, utilizing a range of algorithms adapted from the state-of-the-art in unsupervised machine learning techniques for anomaly detection. Our research includes a comprehensive quantitative evaluation of these algorithms on a large-scale dataset of NSD service consumption for the Paris region. The evaluation uses an original dataset of documented critical or unusual urban events. This dataset has been built as a ground truth basis for assessing the algorithms' performance. The obtained results demonstrate that our framework can detect unusual events almost instantaneously and locate the affected areas with high precision, largely outperforming random classifiers. This efficiency and effectiveness underline the potential of NSD-based anomaly detection in significantly enhancing emergency response strategies and urban planning. By offering a proactive approach to managing urban safety and resilience, our findings highlight the transformative potential of leveraging NSD for anomaly detection in urban environments.
网络信令数据(NSD)有可能提供有关个人使用手机服务的存在、移动性和使用模式的连续时空信息。这种信息对于监测大城市区域和支持决策服务的实施非常有价值。实时分析 NSD 可以实现对关键城市事件的早期检测,包括火灾、大型事故、踩踏事件、恐怖袭击以及体育和休闲聚会等事件,特别是如果这些事件对受影响区域的移动电话网络活动产生重大影响。本文提供了经验证据,表明先进的 NSD 可以以精细的时空分辨率(几十分米的空间分辨率和分钟级的时间分辨率)检测到归因于关键城市事件的移动流量服务消耗中的异常情况。我们提出了两种从大规模 NSD 中提取的多元时间序列实时异常检测方法,利用了一系列从无监督机器学习技术中的异常检测领域的最新技术中改编的算法。我们的研究包括对这些算法在大规模 NSD 服务消耗数据集上的全面定量评估,该数据集使用了记录有文档的关键或异常城市事件的原始数据集。该数据集已作为评估算法性能的基准。所得结果表明,我们的框架几乎可以即时检测到异常事件,并以高精度定位受影响区域,大大优于随机分类器。这种效率和有效性突显了基于 NSD 的异常检测在显著增强应急响应策略和城市规划方面的潜力。通过提供一种主动管理城市安全和弹性的方法,我们的发现突显了利用 NSD 进行城市环境中的异常检测的变革潜力。