Suppr超能文献

知觉中的动态预测模板。

Dynamic predictive templates in perception.

机构信息

Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA.

Center for Information and Neural Networks, National Institute of Information and Communications Technology, Osaka 565-0871, Japan; Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan.

出版信息

Curr Biol. 2024 Sep 23;34(18):4301-4306.e2. doi: 10.1016/j.cub.2024.07.087. Epub 2024 Aug 21.

Abstract

Hallucinations are vivid and transient experiences of objects, such as images or sounds, that occur in the absence of a corresponding stimulus. To understand the neurocomputational mechanisms of hallucinations, cognitive neuroscience has focused on experiments that induce false alarms (FAs) in healthy participants, psychosis-prone individuals, and patients diagnosed with schizophrenia. FAs occur when participants make decisions about difficult-to-detect stimuli and indicate the presence of a signal that was, in fact, not presented. Since FAs are, at heart, reports, they must meet two criteria to serve as an experimental proxy for hallucinations: first, FAs should reflect perceptual states that are characterized by specific contents (criterion 1). Second, FAs should occur on a timescale compatible with the temporal dynamics of hallucinations (criterion 2). In this work, we combined a classification image approach with hidden Markov models to show that FAs can match the perceptual and temporal characteristics of hallucinations. We asked healthy human participants to discriminate visual stimuli from noise and found that FAs were more likely to occur during an internal mode of sensory processing, a minute-long state of the brain during which perception is strongly biased toward previous experiences (serial dependency). Our results suggest that hallucinations are driven by dynamic predictive templates that transform noise into transient, coherent, and meaningful perceptual experiences.

摘要

幻觉是在没有相应刺激的情况下出现的物体(如图像或声音)的生动而短暂的体验。为了理解幻觉的神经计算机制,认知神经科学专注于在健康参与者、易患精神病的个体以及被诊断为精神分裂症的患者中诱发误报(FA)的实验。当参与者对难以察觉的刺激做出决策并表示存在实际上未呈现的信号时,就会出现 FA。由于 FA 本质上是报告,因此它们必须满足两个标准才能作为幻觉的实验替代物:首先,FA 应反映具有特定内容的感知状态(标准 1)。其次,FA 应在与幻觉的时间动态兼容的时间范围内发生(标准 2)。在这项工作中,我们结合分类图像方法和隐马尔可夫模型表明,FA 可以匹配幻觉的感知和时间特征。我们要求健康的人类参与者从噪声中区分视觉刺激,发现 FA 更有可能在内部感觉处理模式下发生,这是大脑持续一分钟的状态,在此期间,感知强烈偏向于先前的经验(序列依赖性)。我们的结果表明,幻觉是由动态预测模板驱动的,这些模板将噪声转化为短暂、连贯和有意义的感知体验。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验