Suppr超能文献

具有有限分子扩散的多氟化物受体可实现高效稳定的三元有机太阳能电池。

Polyfluoride Acceptor with Limited Molecular Diffusion Enables Efficient and Stable Ternary Organic Solar Cells.

作者信息

Li Siyuan, He Zhilong, Zhang Shimin, Hao Zhe, Zhong Hongliang

机构信息

School of Chemistry and Chemical Engineering, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200230, China.

出版信息

ACS Appl Mater Interfaces. 2024 Sep 4;16(35):46332-46340. doi: 10.1021/acsami.4c09336. Epub 2024 Aug 23.

Abstract

Due to the slow diffusion of photovoltaic molecules, in particular, small-molecule acceptors (SMAs), under light and heating, the morphology of the active layer in organic solar cells (OSCs) prefers to deviate from the favorably metastable status, leading to the challenge of stability during long-term operation. Employing materials with a high glass transition temperature () as the third component to suppress molecular diffusion is an efficient method to achieve the balance of efficiency and stability of OSCs. Herein, a dimerized small-molecule acceptor denoted as F6D is synthesized by introducing a polyfluoride moiety as the linker to enhance the . Benefitting from a rational molecular design, F6D not only exhibits a higher , complementary absorption, and cascade energy levels with the host materials of the polymer donor PM6 and the SMA Y6 but also has excellent miscibility and multiple intermolecular interactions with Y6. As a result, a champion power conversion efficiency of 17.52% is achieved in the optimal PM6:Y6:F6D-based device. More importantly, the ternary device exhibits superior stability under continuous heating and lighting compared with the binary device.

摘要

由于光伏分子,特别是小分子受体(SMA)在光照和加热条件下扩散缓慢,有机太阳能电池(OSC)活性层的形态容易偏离有利的亚稳态,这给长期运行中的稳定性带来了挑战。采用具有高玻璃化转变温度()的材料作为第三组分来抑制分子扩散,是实现OSC效率与稳定性平衡的有效方法。在此,通过引入多氟化物部分作为连接基团来增强,合成了一种二聚小分子受体F6D。得益于合理的分子设计,F6D不仅与聚合物供体PM6和SMA Y6的主体材料表现出更高的、互补吸收和级联能级,而且与Y6具有优异的混溶性和多种分子间相互作用。结果,在基于PM6:Y6:F6D的最佳器件中实现了17.52%的冠军功率转换效率。更重要的是,与二元器件相比,三元器件在连续加热和光照下表现出优异的稳定性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验