Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
Department of Genetics, Rutgers University, Piscataway, NJ 08854, USA.
Curr Biol. 2024 Sep 23;34(18):4307-4317.e6. doi: 10.1016/j.cub.2024.07.089. Epub 2024 Aug 22.
The chromosome segregation and cell division programs associated with somatic mitosis and germline meiosis display dramatic differences such as kinetochore orientation, cohesin removal, or the presence of a gap phase. These changes in chromosome segregation require alterations to the established cell division machinery. It remains unclear what aspects of kinetochore function and its regulatory control differ between the mitotic and meiotic cell divisions to rewire these core processes. Alternative RNA splicing can generate distinct protein isoforms to allow for the differential control of cell processes across cell types. However, alternative splice isoforms that differentially modulate distinct cell division programs have remained elusive. Here, we demonstrate that mammalian germ cells express an alternative mRNA splice isoform for the kinetochore component, DSN1, a subunit of the MIS12 complex that links the centromeres to spindle microtubules during chromosome segregation. This germline DSN1 isoform bypasses the requirement for Aurora kinase phosphorylation for its centromere localization due to the absence of a key regulatory region allowing DSN1 to display persistent centromere localization. Expression of the germline DSN1 isoform in somatic cells results in constitutive kinetochore localization, chromosome segregation errors, and growth defects, providing an explanation for its tight cell-type-specific expression. Reciprocally, precisely eliminating expression of the germline-specific DSN1 splice isoform in mouse models disrupts oocyte maturation and early embryonic divisions coupled with a reduction in fertility. Together, this work identifies a germline-specific splice isoform for a chromosome segregation component and implicates its role in mammalian fertility.
与体细胞有丝分裂和生殖细胞减数分裂相关的染色体分离和细胞分裂程序显示出显著的差异,例如动粒取向、黏连蛋白去除或间隙相的存在。这些染色体分离的变化需要对已建立的细胞分裂机制进行改变。目前尚不清楚有丝分裂和减数分裂中动粒功能及其调控控制的哪些方面不同,以重新连接这些核心过程。选择性 RNA 剪接可以产生不同的蛋白质同工型,从而允许对不同类型的细胞过程进行差异控制。然而,能够差异调节不同细胞分裂程序的选择性剪接同工型仍然难以捉摸。在这里,我们证明哺乳动物生殖细胞表达了动粒成分 DSN1 的替代 mRNA 剪接同工型,DSN1 是 MIS12 复合物的一个亚基,在染色体分离过程中连接着着丝粒和纺锤体微管。这种生殖系 DSN1 同工型绕过了 Aurora 激酶磷酸化对其着丝粒定位的要求,因为缺乏一个关键的调节区域,使 DSN1 能够显示出持续的着丝粒定位。在体细胞中表达生殖系 DSN1 同工型会导致动粒定位、染色体分离错误和生长缺陷,这为其严格的细胞类型特异性表达提供了一个解释。反过来,精确地消除小鼠模型中生殖系特异性 DSN1 剪接同工型的表达会破坏卵母细胞成熟和早期胚胎分裂,并伴有生育力下降。总之,这项工作鉴定了一个染色体分离成分的生殖系特异性剪接同工型,并暗示其在哺乳动物生育力中的作用。