School of Geosciences and Info-Physics, Central South University, Changsha, Hunan, 410083, China; Hunan Key Laboratory of Nonferrous Resources and Geological Hazards Exploration, Changsha, Hunan, 410083, China.
School of Geosciences and Info-Physics, Central South University, Changsha, Hunan, 410083, China; Hunan Key Laboratory of Nonferrous Resources and Geological Hazards Exploration, Changsha, Hunan, 410083, China; Hunan Province Geological Disaster Survey and Monitoring Institute, Changsha, Hunan, 410004, China.
J Environ Manage. 2024 Sep;368:122130. doi: 10.1016/j.jenvman.2024.122130. Epub 2024 Aug 23.
The imperative to preserve environmental resources has transcended traditional conservation efforts, becoming a crucial element for sustaining life. Our deep interconnectedness with the natural environment, which directly impacts our well-being, emphasizes this urgency. Contaminants such as leachate from landfills are increasingly threatening groundwater, a vital resource that provides drinking water for nearly half of the global population. This critical environmental threat requires advanced detection and monitoring solutions to effectively safeguard our groundwater resources. To address this pressing need, we introduce the Multifaceted Anomaly Detection Framework (MADF), which integrates Electrical Resistivity Tomography (ERT) with advanced machine learning models-Isolation Forest (IF), One-Class Support Vector Machines (OC-SVM), and Local Outlier Factor (LOF). MADF processes and analyzes ERT data, employing these hybrid machine learning models to identify and quantify anomaly signals accurately via the majority vote strategy. Applied to the Chaling landfill site in Zhuzhou, China, MADF demonstrated significant improvements in detection capability. The framework enhanced the precision of anomaly detection, evidenced by higher Youden Index values (≈ 6.216%), with a 30% increase in sensitivity and a 25% reduction in false positives compared to traditional ERT inversion methods. Indeed, these enhancements are crucial for effective environmental monitoring, where the cost of missing a leak could be catastrophic, and for reducing unnecessary interventions that can be resource-intensive. These results underscore MADF's potential as a robust tool for proactive environmental management, offering a scalable and adaptable solution for comprehensive landfill monitoring and pollution prevention across varied environmental settings.
保护环境资源的紧迫性已经超越了传统的保护努力,成为维持生命的关键因素。我们与自然环境的深度相互依存关系,直接影响着我们的福祉,这凸显了这种紧迫性。垃圾填埋场渗滤液等污染物越来越威胁到地下水,而地下水是为全球近一半人口提供饮用水的重要资源。这种关键的环境威胁需要先进的检测和监测解决方案来有效保护我们的地下水资源。为了解决这一紧迫需求,我们引入了多方面异常检测框架 (MADF),该框架将电阻率层析成像 (ERT) 与先进的机器学习模型——隔离森林 (IF)、单类支持向量机 (OC-SVM) 和局部离群因子 (LOF) 相结合。MADF 处理和分析 ERT 数据,通过多数票策略,利用这些混合机器学习模型准确地识别和量化异常信号。将 MADF 应用于中国株洲茶陵垃圾填埋场,结果表明其检测能力显著提高。该框架通过更高的约登指数值(≈6.216%)提高了异常检测的精度,灵敏度提高了 30%,误报率降低了 25%,优于传统的 ERT 反演方法。事实上,这些改进对于有效的环境监测至关重要,因为错过一个泄漏可能会造成灾难性的后果,并且可以减少不必要的、资源密集型的干预。这些结果突显了 MADF 作为一种强大的环境管理工具的潜力,为各种环境条件下的综合垃圾填埋场监测和污染预防提供了一种可扩展和适应性强的解决方案。