Liu Shuaiwei, Dolotko Oleksandr, Bergfeldt Thomas, Knapp Michael, Ehrenberg Helmut
Institute for Applied Materials-Energy Storage Systems (IAM-ESS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Karlsruhe, Germany.
Helmholtz-Institute Ulm for Electrochemical Energy Storage (HIU), P.O. Box 3640, D-76021, Karlsruhe, Germany.
ChemSusChem. 2025 Jan 2;18(1):e202400727. doi: 10.1002/cssc.202400727. Epub 2024 Sep 13.
As the demand for lithium-ion batteries (LIBs) continues to increase, there is a growing focus on recycling these battery wastes. Among the existing recycling methods, direct recycling is considered a promising approach, because it allows waste to be returned directly to production. One crucial step in this process is the pretreatment, which involves separating the active materials from the current collector. Thermal treatment provides a feasible and effective approach for achieving this separation. Nonetheless, concerns persist regarding the potential impacts of this process on the structure. This study aims to examine the effects of thermal treatment on the separation efficiency and crystal structure of fresh and cycled NMC (LiNiCoMnO) cathodes and graphitic anodes, under various atmospheres and temperatures. The results reveal that an air/oxygen atmosphere facilitates complete separation of cathode materials from aluminum with minimal structural degradation and at lower temperatures compared to other atmospheres. For graphite, thermal treatment under argon, nitrogen and hydrogen demonstrates good structural stability. However, for cycled anodes, the desired separation is not achieved due to the possible interface adhesion that occurs during cycling and heating. Additionally, compared to fresh materials, cycled materials experience more pronounced structural degradation during thermal treatment.
随着锂离子电池(LIBs)需求持续增长,对这些电池废料回收利用的关注日益增加。在现有的回收方法中,直接回收被认为是一种很有前景的方法,因为它能使废料直接回到生产环节。这个过程中的一个关键步骤是预处理,即从集流体中分离出活性材料。热处理为实现这种分离提供了一种可行且有效的方法。然而,人们对该过程对结构的潜在影响仍存在担忧。本研究旨在考察在不同气氛和温度下,热处理对新鲜的和循环使用后的NMC(LiNiCoMnO)阴极和石墨阳极的分离效率及晶体结构的影响。结果表明,与其他气氛相比,空气/氧气气氛有助于在较低温度下以最小的结构降解从铝中完全分离阴极材料。对于石墨,在氩气、氮气和氢气气氛下进行热处理显示出良好的结构稳定性。然而,对于循环使用后的阳极,由于在循环和加热过程中可能发生的界面粘附,无法实现理想的分离。此外,与新鲜材料相比,循环使用后的材料在热处理过程中结构降解更为明显。