Suppr超能文献

坚守角色!大型语言模型中表达的个人价值观的稳定性。

Stick to your role! Stability of personal values expressed in large language models.

机构信息

Flowers Team, INRIA, Bordeaux, France.

Ubisoft La Forge, Bordeaux, France.

出版信息

PLoS One. 2024 Aug 26;19(8):e0309114. doi: 10.1371/journal.pone.0309114. eCollection 2024.

Abstract

The standard way to study Large Language Models (LLMs) through benchmarks or psychology questionnaires is to provide many different queries from similar minimal contexts (e.g. multiple choice questions). However, due to LLM's highly context-dependent nature, conclusions from such minimal-context evaluations may be little informative about the model's behavior in deployment (where it will be exposed to many new contexts). We argue that context-dependence should be studied as another dimension of LLM comparison alongside others such as cognitive abilities, knowledge, or model size. In this paper, we present a case-study about the stability of value expression over different contexts (simulated conversations on different topics), and as measured using a standard psychology questionnaire (PVQ) and behavioral downstream tasks. We consider 21 LLMs from six families. Reusing methods from psychology, we study Rank-order stability on the population (interpersonal) level, and Ipsative stability on the individual (intrapersonal) level. We explore two settings: with and without instructing LLMs to simulate particular personalities. We observe similar trends in the stability of models and model families-Mixtral, Mistral, GPT-3.5 and Qwen families being more stable than LLaMa-2 and Phi-over those two settings, two different simulated populations, and even on three downstream behavioral tasks. When instructed to simulate particular personas, LLMs exhibit low Rank-Order stability, and this stability further diminishes with conversation length. This highlights the need for future research directions on LLMs that can coherently simulate a diversity of personas, as well as how context-dependence can be studied in more thorough and efficient ways. This paper provides a foundational step in that direction, and, to our knowledge, it is the first study of value stability in LLMs. The project website with code is available at https://sites.google.com/view/llmvaluestability.

摘要

研究大型语言模型(LLM)的标准方法是通过基准测试或心理学问卷,提供来自相似最小上下文的许多不同查询(例如选择题)。然而,由于 LLM 的高度依赖上下文的性质,从这种最小上下文评估中得出的结论可能对模型在部署中的行为(在部署中它将暴露于许多新的上下文)没有什么信息。我们认为,上下文依赖性应该作为 LLM 比较的另一个维度来研究,与认知能力、知识或模型大小等其他维度并列。在本文中,我们提出了一个关于不同上下文(关于不同主题的模拟对话)下价值表达稳定性的案例研究,并使用标准心理学问卷(PVQ)和行为下游任务进行了衡量。我们考虑了六个家族的 21 个 LLM。我们从心理学中重新使用方法,研究了人口(人际)水平上的秩稳定性和个体(内省)水平上的等质稳定性。我们探索了两种设置:有和没有指示 LLM 模拟特定个性。我们观察到模型和模型家族的稳定性的相似趋势-Mixtral、Mistral、GPT-3.5 和 Qwen 家族比 LLaMa-2 和 Phi 更稳定-在这两种设置下,两个不同的模拟群体,甚至在三个下游行为任务中都是如此。当被指示模拟特定个性时,LLM 表现出低的秩稳定性,并且这种稳定性随着对话长度的增加而进一步降低。这凸显了未来对能够一致模拟多种个性的 LLM 进行研究的必要性,以及如何以更全面和有效的方式研究上下文依赖性。本文提供了朝着这个方向迈出的基础一步,并且据我们所知,这是对 LLM 中价值稳定性的首次研究。带有代码的项目网站可在 https://sites.google.com/view/llmvaluestability 上找到。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e42/11346639/de58d38e74e5/pone.0309114.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验