School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA.
School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA; Ray W. Herrick Laboratories, Purdue University, West Lafayette, IN 47907, USA.
Int J Pharm. 2024 Oct 25;664:124635. doi: 10.1016/j.ijpharm.2024.124635. Epub 2024 Aug 24.
We propose a two-stage reduced-order model (ROM) of pharmaceutical tablet dissolution that is comprised of (i) a mechanistic dissolution function of the active pharmaceutical ingredient (API) and (ii) a tablet wetting function. The former is derived from a population balance model, using a high-resolution finite volume algorithm for a given API crystal size distribution and dissolution rate coefficient. The latter is obtained from the mechanistic understanding of water penetration inside a porous tablet, and it estimates the rate at which the API is exposed to the buffer solution for a given formulation and the dimensions of the tablet, contact angle, and surface tension between the solid and liquid phases, liquid viscosity, and mean effective capillary radius of the pore solid structure. In turn, the two-stage model is mechanistic in nature and one-way coupled by means of convolution in time to capture the start time of the API dissolution process as water uptake, swelling, and disintegration take place. The two-stage model correlates dissolution profiles with critical process parameters (CPPs), critical material attributes (CMAs), and other crucial critical quality attributes (CQAs). We demonstrate the model's versatility and effectiveness in predicting the dissolution profiles of diverse pharmaceutical formulations. Specifically, we formulate and fabricate acetaminophen and lomustine solid tablets using different API content and size distributions, characterize their dissolution behavior, and estimate capillary radius as a function of tablet porosity. The estimations generated by the proposed models consistently match the experimental data across all cases investigated in this study.
我们提出了一种两阶段的药物片剂溶解降阶模型(ROM),它由(i)活性药物成分(API)的机械溶解函数和(ii)片剂润湿函数组成。前者是从群体平衡模型推导出来的,使用高分辨率有限体积算法来获得给定的 API 晶体尺寸分布和溶解速率系数。后者是从水在多孔片剂内部渗透的机械理解中得到的,它估计了给定配方和片剂尺寸、接触角、固液相间的表面张力、液体粘度和多孔固体结构的有效平均毛细半径下 API 暴露于缓冲溶液的速率。反过来,两阶段模型本质上是机械的,通过时间卷积进行单向耦合,以捕捉 API 溶解过程的开始时间,因为水的吸收、膨胀和崩解会发生。两阶段模型将溶解曲线与关键工艺参数(CPP)、关键材料属性(CMA)和其他关键质量属性(CQA)相关联。我们展示了该模型在预测不同药物配方的溶解曲线方面的多功能性和有效性。具体来说,我们使用不同的 API 含量和尺寸分布来制备和制造对乙酰氨基酚和洛莫司汀的固体片剂,对它们的溶解行为进行了表征,并估计了毛细管半径作为片剂孔隙率的函数。在所研究的所有情况下,所提出模型生成的估计值与实验数据一致。