Department of Ultrasound, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
J Clin Ultrasound. 2024 Nov-Dec;52(9):1313-1320. doi: 10.1002/jcu.23800. Epub 2024 Aug 27.
To predict post-thyroidectomy complications in papillary thyroid microcarcinoma (PTMC) patients using a deep learning model based on preoperative ultrasonographic features. This study addresses the global rise in PTMC incidence and the challenges in treatment decision-making with high-resolution ultrasonography.
This study enrolled 1638 patients with clinically staged cN0 PTMC who received surgical treatment from 1997 to 2019 at Beijing Friendship Hospital. Deep learning model was developed using fully connected neural network. Feature selection included 1000 iterations of Bootstrap sampling and Recursive Feature Elimination (RFE) to identify the top 10 features. Data preprocessing involved normalization and imputation for missing values. SMOTE addressed class imbalance. The model was trained and tested on random data split, with performance metrics including Accuracy (ACC), Area Under the Curve (AUC), Sensitivity (SEN), and Specificity (SPE), visualized through a ROC curve and confusion matrix.
The fully connected deep neural network model demonstrated high accuracy (ACC 0.81), Area Under the Curve (AUC 0.74), sensitivity (SEN 0.65), and specificity (SPE 0.83) and visualized by ROC curve and confusion matrix. These results highlight the model's reliability and potential as an effective tool in predicting postoperative complications and assisting in clinical decision-making for PTMC patients.
This study highlights the potential of deep learning in enhancing medical predictions and personalized healthcare. Despite promising results, limitations include a single-center data source and unconsidered factors like lifestyle and genetics. Future research should expand data sources, include more influencing factors, and refine algorithms to improve accuracy and applicability in thyroid cancer treatment.
利用基于术前超声特征的深度学习模型预测甲状腺微小乳头状癌(PTMC)患者术后并发症。本研究旨在解决全球范围内 PTMC 发病率上升以及高分辨率超声在治疗决策方面面临的挑战。
本研究纳入了 1997 年至 2019 年在北京友谊医院接受手术治疗的临床分期为 cN0 的 1638 例 PTMC 患者。深度学习模型采用全连接神经网络开发。特征选择包括 1000 次 Bootstrap 采样和递归特征消除(RFE),以确定前 10 个特征。数据预处理包括归一化和缺失值插补。SMOTE 解决了类不平衡问题。模型在随机数据分割上进行训练和测试,性能指标包括准确性(ACC)、曲线下面积(AUC)、敏感性(SEN)和特异性(SPE),通过 ROC 曲线和混淆矩阵进行可视化。
全连接深度神经网络模型表现出较高的准确性(ACC 0.81)、曲线下面积(AUC 0.74)、敏感性(SEN 0.65)和特异性(SPE 0.83),并通过 ROC 曲线和混淆矩阵进行了可视化。这些结果突出了该模型在预测术后并发症和辅助 PTMC 患者临床决策方面的可靠性和潜力。
本研究强调了深度学习在增强医学预测和个性化医疗方面的潜力。尽管取得了有希望的结果,但仍存在一些局限性,包括单一中心的数据来源以及未考虑生活方式和遗传等因素。未来的研究应扩大数据来源,纳入更多影响因素,并改进算法,以提高在甲状腺癌治疗中的准确性和适用性。