Department of Laboratory Medicine, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, South Korea.
Department of Laboratory Medicine, Ewha Womans University College of Medicine, Seoul, South Korea.
Antimicrob Agents Chemother. 2024 Oct 8;68(10):e0069924. doi: 10.1128/aac.00699-24. Epub 2024 Aug 28.
Vancomycin, a crucial antibiotic for Gram-positive bacterial infections, requires therapeutic drug monitoring (TDM). Contemporary guidelines advocate for AUC-based monitoring; however, using Bayesian programs for AUC estimation poses challenges. We aimed to develop and evaluate a simplified AUC estimation equation using a steady-state trough concentration (C) value. Utilizing 1,034 TDM records from 580 general hospitalized patients at a university-affiliated hospital in Ulsan, we created an equation named SSTA that calculates the AUC by applying C, body weight, and single dose as input variables. External validation included 326 records from 163 patients at a university-affiliated hospital in Seoul (EWUSH) and literature data from 20 patients at a university-affiliated hospital in Bangkok (MUSI). It was compared with other AUC estimation models based on the C, including a linear regression model (LR), a sophisticated model based on the first-order equation (VancoPK), and a Bayesian model (BSCt). Evaluation metrics, such as median absolute percentage error (MdAPE) and the percentage of observations within ±20% error (P20), were calculated. External validation using the EWUSH data set showed that SSTA, LR, VancoPK, and BSCt had MdAPE values of 6.4, 10.1, 6.6, and 7.5% and P20 values of 87.1, 82.5, 87.7, and 83.4%, respectively. External validation using the MUSI data set showed that SSTA, LR, and VancoPK had MdAPEs of 5.2, 9.4, and 7.2%, and P20 of 95, 90, and 95%, respectively. Owing to its decent AUC prediction performance, simplicity, and convenience for automated calculation and reporting, SSTA could be used as an adjunctive tool for the AUC-based TDM.
万古霉素是治疗革兰氏阳性菌感染的关键抗生素,需要进行治疗药物监测(TDM)。当代指南主张基于 AUC 的监测;然而,使用贝叶斯程序进行 AUC 估计存在挑战。我们旨在开发和评估一种使用稳态谷浓度(C)值的简化 AUC 估计方程。利用在蔚山大学附属医院的 580 名普通住院患者的 1034 份 TDM 记录,我们创建了一个名为 SSTA 的方程,该方程通过将 C、体重和单剂量作为输入变量来计算 AUC。外部验证包括首尔一所大学附属医院的 163 名患者的 326 份记录(EWUSH)和曼谷一所大学附属医院的 20 名患者的文献数据(MUSI)。将其与其他基于 C 的 AUC 估计模型(包括线性回归模型(LR)、基于一阶方程的复杂模型(VancoPK)和贝叶斯模型(BSCt))进行比较。使用 EWUSH 数据集进行评估,结果显示 SSTA、LR、VancoPK 和 BSCt 的中值绝对百分比误差(MdAPE)值分别为 6.4%、10.1%、6.6%和 7.5%,观察值在±20%误差内的百分比(P20)分别为 87.1%、82.5%、87.7%和 83.4%。使用 MUSI 数据集进行外部验证,结果显示 SSTA、LR 和 VancoPK 的 MdAPE 值分别为 5.2%、9.4%和 7.2%,P20 值分别为 95%、90%和 95%。由于其具有良好的 AUC 预测性能、简单性以及自动计算和报告的便利性,SSTA 可以作为 AUC 基于 TDM 的辅助工具。