Department of Biology, University of North Florida, Jacksonville, FL 32224, USA.
Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA.
Genes (Basel). 2024 Jul 24;15(8):975. doi: 10.3390/genes15080975.
Microgravity exposure induces a cephalad fluid shift and an overall reduction in physical activity levels which can lead to cardiovascular deconditioning in the absence of countermeasures. Future spaceflight missions will expose crew to extended periods of microgravity among other stressors, the effects of which on cardiovascular health are not fully known. In this study, we determined cardiac responses to extended microgravity exposure using the rat hindlimb unloading (HU) model. We hypothesized that exposure to prolonged simulated microgravity and subsequent recovery would lead to increased oxidative damage and altered expression of genes involved in the oxidative response. To test this hypothesis, we examined hearts of male (three and nine months of age) and female (3 months of age) Long-Evans rats that underwent HU for various durations up to 90 days and reambulated up to 90 days post-HU. Results indicate sex-dependent changes in oxidative damage marker 8-hydroxydeoxyguanosine (8-OHdG) and antioxidant gene expression in left ventricular tissue. Three-month-old females displayed elevated 8-OHdG levels after 14 days of HU while age-matched males did not. In nine-month-old males, there were no differences in 8-OHdG levels between HU and normally loaded control males at any of the timepoints tested following HU. RNAseq analysis of left ventricular tissue from nine-month-old males after 14 days of HU revealed upregulation of pathways involved in pro-inflammatory signaling, immune cell activation and differential expression of genes associated with cardiovascular disease progression. Taken together, these findings provide a rationale for targeting antioxidant and immune pathways and that sex differences should be taken into account in the development of countermeasures to maintain cardiovascular health in space.
微重力暴露会导致头向液移位和整体活动水平降低,如果没有对策,这可能导致心血管功能下降。未来的太空飞行任务将使机组人员在其他应激源的情况下暴露于长时间的微重力中,其对心血管健康的影响尚不完全清楚。在这项研究中,我们使用大鼠后肢去负荷(HU)模型来确定对长时间微重力暴露的心脏反应。我们假设,暴露于长时间模拟微重力和随后的恢复会导致氧化损伤增加和涉及氧化反应的基因表达改变。为了验证这一假设,我们检查了接受各种时长 HU(最长 90 天)并在 HU 后再步行长达 90 天的雄性(3 个月和 9 个月龄)和雌性(3 个月龄)Long-Evans 大鼠的心脏。结果表明,氧化损伤标志物 8-羟基脱氧鸟苷(8-OHdG)和左心室组织中抗氧化基因表达存在性别依赖性变化。14 天 HU 后,3 个月龄雌性大鼠的 8-OHdG 水平升高,而同龄雄性大鼠则没有。在 9 个月龄雄性大鼠中,HU 后任何时间点 HU 组与正常负荷对照组雄性大鼠之间的 8-OHdG 水平均无差异。对 14 天 HU 后 9 个月龄雄性大鼠左心室组织的 RNAseq 分析显示,与炎症信号、免疫细胞激活和与心血管疾病进展相关的基因表达差异相关的途径上调。总之,这些发现为靶向抗氧化和免疫途径提供了依据,并且在开发维持太空心血管健康的对策时,应考虑性别差异。
Genes (Basel). 2024-7-24
Int J Cardiol. 2014-10-20
Am J Physiol Heart Circ Physiol. 2007-7
J Appl Physiol (1985). 2000-9
Antioxidants (Basel). 2025-2-18
NPJ Microgravity. 2024-6-11
Antioxidants (Basel). 2022-2-6
JAMA Netw Open. 2019-11-1