Department of Biochemistry and Molecular Biology and Soil Science and Agricultural Chemistry, Faculty of Science, University of Alicante, Carretera de San Vicente del Raspeig s/n, 03690 Alicante, Spain.
Global BioTech SL, C/Padre Manjón Nº2, 03560 Alicante, Spain.
Genes (Basel). 2024 Aug 12;15(8):1058. doi: 10.3390/genes15081058.
Phycocyanobilin (PCB) is a small chromophore found in certain phycobiliproteins, such as phycocyanins (PCs) and allophycocyanins (APCs). PCB, along with other phycobilins (PBs) and intermediates such as biliverdin (BV) or phycoerythrobilin (PEB), is attracting increasing biotechnological interest due to its fluorescent and medicinal properties that allow potential applications in biomedicine and the food industry. This study aims to optimize PCB synthesis in BL21 (DE3) and scale the process to a pre-industrial level. Parameters such as optimal temperature, inducer concentration, initial OD, and stirring speed were analyzed in shake flask cultures to maximize PCB production. The best results were obtained at a temperature of 28 °C, an IPTG concentration of 0.1 mM, an initial OD of 0.5, and an orbital shaking speed of 260 rpm. Furthermore, the optimized protocol was scaled up into a 2 L bioreactor batch, achieving a maximum PCB concentration of 3.8 mg/L. Analysis of the results revealed that biosynthesis of exogenous PBs in BL21 (DE3) is highly dependent on the metabolic burden of the host. Several scenarios, such as too rapid growth, high inducer concentration, or mechanical stress, can advance entry into the stationary phase. That progressively halts pigment synthesis, leading, in some cases, to its excretion into the growth media and ultimately triggering rapid degradation by the host. These conclusions provide a promising protocol for scalable PCB production and highlight the main biotechnological challenges to increase the yields of the process.
藻蓝胆素(PCB)是一种在某些藻胆蛋白中发现的小生色团,如藻蓝蛋白(PC)和别藻蓝蛋白(APC)。PCB 与其他藻胆素(PB)和中间产物如胆红素(BV)或藻红胆素(PEB)一起,由于其荧光和药用特性,引起了越来越多的生物技术兴趣,这些特性使其在生物医学和食品工业中有潜在的应用。本研究旨在优化 BL21(DE3)中的 PCB 合成,并将该过程扩大到工业前规模。在摇瓶培养中分析了最佳温度、诱导剂浓度、初始 OD 和搅拌速度等参数,以最大限度地提高 PCB 产量。在 28°C 的温度、0.1mM IPTG 浓度、0.5 的初始 OD 和 260rpm 的轨道搅拌速度下获得了最佳结果。此外,优化后的方案被扩大到 2L 生物反应器分批培养中,达到了 3.8mg/L 的最大 PCB 浓度。结果分析表明,BL21(DE3)中外源 PB 的生物合成高度依赖宿主的代谢负担。几种情况,如过快的生长、高诱导剂浓度或机械应激,都可以提前进入静止期。这会逐渐停止色素的合成,导致在某些情况下将其分泌到生长培养基中,并最终导致宿主快速降解。这些结论为可扩展的 PCB 生产提供了有希望的方案,并强调了提高该过程产率的主要生物技术挑战。