Kim Min-Seok, Won Soonho
Department of Materials Science and Engineering, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea.
Materials Testing & Reliability Division, Korea Institute of Materials Science, 797, Changwon-daero, Seongsan-gu, Changwon-si 51508, Republic of Korea.
Materials (Basel). 2024 Aug 13;17(16):4027. doi: 10.3390/ma17164027.
With the increasing demand for high-performance leisure boat propellers, this study explores the development of high-strength aluminum alloy propellers using the low-pressure die-casting (LPDC) process. In Part I of the study, we identified the optimal alloy compositions for Al-6Zn-2Mg-1.5Cu propellers and highlighted the challenges of hot tearing at the junction between the hub and blades. In this continuation, we developed a coupled thermal fluid stress analysis model using ProCAST software to optimize the LPDC process. By adjusting casting parameters such as the melt supply temperature, initial mold temperature, and curvature radius between the hub and blades, we minimized hot tearing and other casting defects. The results were validated through simulations and practical applications, showing significant improvements in the quality and structural integrity of the propellers. Non-destructive testing using X-ray CT confirmed the reduction in internal defects, demonstrating the effectiveness of the simulation-based approach for alloy design and process optimization.
随着对高性能休闲船螺旋桨的需求不断增加,本研究探索了采用低压铸造(LPDC)工艺开发高强度铝合金螺旋桨。在研究的第一部分,我们确定了用于Al-6Zn-2Mg-1.5Cu螺旋桨的最佳合金成分,并强调了轮毂与叶片连接处热撕裂的挑战。在本后续研究中,我们使用ProCAST软件开发了一个耦合热流体应力分析模型,以优化LPDC工艺。通过调整诸如熔体供应温度、初始模具温度以及轮毂与叶片之间的曲率半径等铸造参数,我们将热撕裂和其他铸造缺陷降至最低。通过模拟和实际应用对结果进行了验证,结果表明螺旋桨的质量和结构完整性有了显著提高。使用X射线CT进行的无损检测证实了内部缺陷的减少,证明了基于模拟的合金设计和工艺优化方法的有效性。