Liu Yiteng, Hu Zhiyang, Yang Siyu, Xu Na, Song Qi, Gao Yibo, Wen Weijia
Division of Emerging Interdisciplinary Areas, Academy of Interdisciplinary Studies, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China.
Thrust of Advanced Materials, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou 511400, China.
Micromachines (Basel). 2024 Jul 24;15(8):944. doi: 10.3390/mi15080944.
The combination of multiplex polymerase chain reaction (mPCR) and microfluidic technologies demonstrates great significance in biomedical applications. However, current microfluidics-based molecular diagnostics face challenges in multi-target detection due to their limited fluorescence channels, complicated fabrication process, and high cost. In this research, we proposed a cost-effective sandblasting method for manufacturing silicon microchips and a chip-based microdevice for field mPCR detection. The atomic force microscopy (AFM) images showed a rough surface of the sandblasted microchips, leading to poor biocompatibility. To relieve the inhibitory effect, we dip-coated a layer of bovine serum albumin (BSA) on the irregular substrate. The optimized coating condition was determined by scanning electron microscope (SEM) and energy-dispersive X-ray spectroscopy (EDS) (65 °C for 60 min). After sufficient coating, we performed on-chip PCR tests with 500 copies/mL Coronavirus Disease 2019 (COVID-19) standard sample within 20 min, and the sandblasted microchip displayed a higher amplification rate compared to dry etching chips. Finally, we achieved a 50 min mPCR for screening five resistance genes of the endophthalmitis pathogens on our microdevices, with strong specificity and reliability. Thus, this sandblasted microchip-based platform not only provides a rapid, accessible, and effective solution for multiplex molecular detection but also enables large-scale microfabrication in a low-cost and convenient way.
多重聚合酶链反应(mPCR)与微流控技术的结合在生物医学应用中具有重要意义。然而,当前基于微流控的分子诊断技术由于荧光通道有限、制造工艺复杂且成本高昂,在多靶点检测方面面临挑战。在本研究中,我们提出了一种用于制造硅微芯片的经济高效的喷砂方法以及一种用于现场mPCR检测的基于芯片的微器件。原子力显微镜(AFM)图像显示喷砂微芯片表面粗糙,导致生物相容性较差。为减轻抑制作用,我们在不规则基底上浸涂了一层牛血清白蛋白(BSA)。通过扫描电子显微镜(SEM)和能量色散X射线光谱(EDS)确定了优化的涂层条件(65°C下60分钟)。充分涂层后,我们在20分钟内对浓度为500拷贝/毫升的2019冠状病毒病(COVID-19)标准样品进行了芯片上的PCR测试,与干法蚀刻芯片相比,喷砂微芯片显示出更高的扩增率。最后,我们在我们的微器件上实现了50分钟的mPCR,用于筛选眼内炎病原体的五个耐药基因,具有很强的特异性和可靠性。因此,这个基于喷砂微芯片的平台不仅为多重分子检测提供了一种快速、便捷且有效的解决方案,还能够以低成本且方便的方式进行大规模微制造。