Suppr超能文献

定量系统药理学(QSP)模型在从电子健康记录预测钾浓度方面的实际应用:螺内酯处方监测的一个试点案例。

Real-World Application of a Quantitative Systems Pharmacology (QSP) Model to Predict Potassium Concentrations from Electronic Health Records: A Pilot Case towards Prescribing Monitoring of Spironolactone.

作者信息

Meid Andreas D, Scherkl Camilo, Metzner Michael, Czock David, Seidling Hanna M

机构信息

Internal Medicine IX: Department of Clinical Pharmacology and Pharmacoepidemiology, Medical Faculty Heidelberg/Heidelberg University Hospital, Heidelberg University, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany.

Internal Medicine IX: Department of Clinical Pharmacology and Pharmacoepidemiology-Cooperation Unit Clinical Pharmacy, Medical Faculty Heidelberg/Heidelberg University Hospital, Heidelberg University, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany.

出版信息

Pharmaceuticals (Basel). 2024 Aug 7;17(8):1041. doi: 10.3390/ph17081041.

Abstract

Quantitative systems pharmacology (QSP) models are rarely applied prospectively for decision-making in clinical practice. We therefore aimed to operationalize a QSP model for potas-sium homeostasis to predict potassium trajectories based on spironolactone administrations. For this purpose, we proposed a general workflow that was applied to electronic health records (EHR) from patients treated in a German tertiary care hospital. The workflow steps included model exploration, local and global sensitivity analyses (SA), identifiability analysis (IA) of model parameters, and specification of their inter-individual variability (IIV). Patient covariates, selected parameters, and IIV then defined prior information for the Bayesian a posteriori prediction of individual potassium trajectories of the following day. Following these steps, the successfully operationalized QSP model was interactively explored via a Shiny app. SA and IA yielded five influential and estimable parameters (extracellular fluid volume, hyperaldosteronism, mineral corticoid receptor abundance, potassium intake, sodium intake) for Bayesian prediction. The operationalized model was validated in nine pilot patients and showed satisfactory performance based on the (absolute) average fold error. This provides proof-of-principle for a Prescribing Monitoring of potassium concentrations in a hospital system, which could suggest preemptive clinical measures and therefore potentially avoid dangerous hyperkalemia or hypokalemia.

摘要

定量系统药理学(QSP)模型很少前瞻性地应用于临床实践中的决策制定。因此,我们旨在建立一个钾稳态的QSP模型,以根据螺内酯的给药情况预测钾的变化轨迹。为此,我们提出了一个通用的工作流程,并将其应用于一家德国三级护理医院治疗的患者的电子健康记录(EHR)。工作流程步骤包括模型探索、局部和全局敏感性分析(SA)、模型参数的可识别性分析(IA)以及个体间变异性(IIV)的指定。患者协变量、选定参数和IIV随后为次日个体钾变化轨迹的贝叶斯后验预测定义了先验信息。按照这些步骤,通过一个Shiny应用程序对成功建立的QSP模型进行交互式探索。SA和IA产生了五个对贝叶斯预测有影响且可估计的参数(细胞外液量、醛固酮增多症、盐皮质激素受体丰度、钾摄入量、钠摄入量)。该实用化模型在九名试点患者中得到验证,并基于(绝对)平均倍数误差显示出令人满意的性能。这为医院系统中钾浓度的处方监测提供了原理证明,该监测可建议采取先发制人的临床措施,从而有可能避免危险的高钾血症或低钾血症。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/843e/11357243/f79af2ce808d/pharmaceuticals-17-01041-g0A1.jpg

相似文献

3
A quantitative systems pharmacology model of plasma potassium regulation by the kidney and aldosterone.
J Pharmacokinet Pharmacodyn. 2022 Aug;49(4):471-486. doi: 10.1007/s10928-022-09815-x. Epub 2022 Jul 1.
7
QSP Toolbox: Computational Implementation of Integrated Workflow Components for Deploying Multi-Scale Mechanistic Models.
AAPS J. 2017 Jul;19(4):1002-1016. doi: 10.1208/s12248-017-0100-x. Epub 2017 May 24.
8
Virtual Populations for Quantitative Systems Pharmacology Models.
Methods Mol Biol. 2022;2486:129-179. doi: 10.1007/978-1-0716-2265-0_8.

本文引用的文献

2
An industry perspective on current QSP trends in drug development.
J Pharmacokinet Pharmacodyn. 2024 Oct;51(5):511-520. doi: 10.1007/s10928-024-09905-y. Epub 2024 Mar 5.
3
Model-Informed Precision Dosing (MIPD).
Pharmaceutics. 2022 Dec 6;14(12):2731. doi: 10.3390/pharmaceutics14122731.
4
A quantitative systems pharmacology model of plasma potassium regulation by the kidney and aldosterone.
J Pharmacokinet Pharmacodyn. 2022 Aug;49(4):471-486. doi: 10.1007/s10928-022-09815-x. Epub 2022 Jul 1.
6
A Quantitative Systems Pharmacology Perspective on the Importance of Parameter Identifiability.
Bull Math Biol. 2022 Feb 7;84(3):39. doi: 10.1007/s11538-021-00982-5.
7
Predicting model-informed precision dosing: A test-case in tacrolimus dose adaptation for kidney transplant recipients.
CPT Pharmacometrics Syst Pharmacol. 2022 Mar;11(3):348-361. doi: 10.1002/psp4.12758. Epub 2022 Feb 2.
8
Evaluation framework for systems models.
CPT Pharmacometrics Syst Pharmacol. 2022 Mar;11(3):264-289. doi: 10.1002/psp4.12755. Epub 2022 Jan 10.
9
Use of Real-World Evidence to Drive Drug Development Strategy and Inform Clinical Trial Design.
Clin Pharmacol Ther. 2022 Jan;111(1):77-89. doi: 10.1002/cpt.2480. Epub 2021 Nov 28.
10
The Role of Real-World Evidence in FDA-Approved New Drug and Biologics License Applications.
Clin Pharmacol Ther. 2022 Jan;111(1):135-144. doi: 10.1002/cpt.2474. Epub 2021 Nov 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验