Renard Isaline, D'huys Thomas, Burke Benjamin P, Ajoleza Trisha, Cain Amy N, Funwie Neil L, Khan Abid, Maples Danny L, Maples Randall D, Matz Dallas L, McRobbie Graeme, Ullom Robert, Prior Timothy J, Linder Douglas P, Van Loy Tom, Hubin Timothy J, Schols Dominique, Archibald Stephen J
Centre for Biomedicine and Positron Emission Tomography Research Centre, The University of Hull, Cottingham Road, Hull HU6 7RX, UK.
School of Biomedical Engineering and Imaging Sciences, King's College London, 4th Floor Lambeth Wing, St Thomas' Hospital, London SE1 7EH, UK.
Pharmaceutics. 2024 Jul 28;16(8):1000. doi: 10.3390/pharmaceutics16081000.
Understanding the role of chemokine receptors in health and disease has been of increasing interest in recent years. Chemokine receptor CXCR4 has been extensively studied because of its defined role in immune cell trafficking, HIV infection, inflammatory diseases, and cancer progression. We have developed high affinity rigidified CXCR4 antagonists that incorporate metal ions to optimize the binding interactions with the aspartate side chains at the extracellular surface of the CXCR4 chemokine receptor and increase the residence time. Cross- and side-bridged tetraazamacrocylic complexes offer significant advantages over the non-bridged molecular structures in terms of receptor affinity, potential for radiolabelling, and use in therapeutic applications. Our investigation has been extended to the influence of the ring size on bridged tetraazamacrocyclic compounds with the addition of two novel chelators (bis-cross-bridged homocyclen and bis-cross-bridged cyclen) to compare to the bis-bridged cyclam, along with novel metal complexes formed with copper(II) or zinc(II). The in vitro biological assays showed that all of the zinc(II) complexes are high affinity antagonists with a marked increase in CXCR4 selectivity for the bis-cross-bridged cyclen complex, whereas the properties of the copper(II) complexes are highly dependent on metal ion geometry. X-ray crystal structural data and DFT computational studies allow for the rationalisation of the relative affinities and the aspartate residue interactions on the protein surface. Changing the ring size from 14-membered can increase the selectivity for the CXCR4 receptor whilst retaining potent inhibitory activity, improving the key pharmacological characteristics.
近年来,了解趋化因子受体在健康与疾病中的作用越来越受到关注。趋化因子受体CXCR4因其在免疫细胞运输、HIV感染、炎症性疾病和癌症进展中明确的作用而受到广泛研究。我们已经开发出高亲和力的刚性CXCR4拮抗剂,这些拮抗剂结合金属离子以优化与CXCR4趋化因子受体细胞外表面天冬氨酸侧链的结合相互作用,并延长停留时间。与非桥连分子结构相比,交叉和侧桥连四氮杂大环配合物在受体亲和力、放射性标记潜力和治疗应用方面具有显著优势。我们的研究已扩展到环大小对桥连四氮杂大环化合物的影响,添加了两种新型螯合剂(双交叉桥连同环烯和双交叉桥连环烯)以与双桥连环胺进行比较,以及与铜(II)或锌(II)形成的新型金属配合物。体外生物学测定表明,所有锌(II)配合物都是高亲和力拮抗剂,双交叉桥连环烯配合物对CXCR4的选择性显著增加,而铜(II)配合物的性质高度依赖于金属离子几何结构。X射线晶体结构数据和DFT计算研究有助于合理化相对亲和力以及蛋白质表面上的天冬氨酸残基相互作用。将环大小从14元环改变可以增加对CXCR4受体的选择性,同时保留强效抑制活性,改善关键的药理学特性。