Suppr超能文献

基于音频信号和自编码器最大似然分类的蜜蜂识别非侵入式系统。

Non-Intrusive System for Honeybee Recognition Based on Audio Signals and Maximum Likelihood Classification by Autoencoder.

机构信息

Department of Acoustics, Multimedia and Signal Processing, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland.

出版信息

Sensors (Basel). 2024 Aug 21;24(16):5389. doi: 10.3390/s24165389.

Abstract

Artificial intelligence and Internet of Things are playing an increasingly important role in monitoring beehives. In this paper, we propose a method for automatic recognition of honeybee type by analyzing the sound generated by worker bees and drone bees during their flight close to an entrance to a beehive. We conducted a wide comparative study to determine the most effective preprocessing of audio signals for the detection problem. We compared the results for several different methods for signal representation in the frequency domain, including mel-frequency cepstral coefficients (MFCCs), gammatone cepstral coefficients (GTCCs), the multiple signal classification method (MUSIC) and parametric estimation of power spectral density (PSD) by the Burg algorithm. The coefficients serve as inputs for an autoencoder neural network to discriminate drone bees from worker bees. The classification is based on the reconstruction error of the signal representations produced by the autoencoder. We propose a novel approach to class separation by the autoencoder neural network with various thresholds between decision areas, including the maximum likelihood threshold for the reconstruction error. By classifying real-life signals, we demonstrated that it is possible to differentiate drone bees and worker bees based solely on audio signals. The attained level of detection accuracy enables the creation of an efficient automatic system for beekeepers.

摘要

人工智能和物联网在监测蜂箱方面发挥着越来越重要的作用。在本文中,我们提出了一种通过分析工蜂和雄蜂在靠近蜂箱入口处飞行时产生的声音来自动识别蜜蜂种类的方法。我们进行了广泛的比较研究,以确定用于检测问题的最有效音频信号预处理方法。我们比较了几种不同的信号在频域中的表示方法的结果,包括梅尔频率倒谱系数 (MFCC)、伽马倒谱系数 (GTCC)、多重信号分类方法 (MUSIC) 和 Burg 算法的参数估计功率谱密度 (PSD)。这些系数作为输入输入到自动编码器神经网络中,以区分雄蜂和工蜂。分类是基于自动编码器产生的信号表示的重建误差。我们提出了一种通过自动编码器神经网络进行类分离的新方法,包括决策区域之间的各种阈值,包括重建误差的最大似然阈值。通过对实际信号进行分类,我们证明仅基于音频信号就可以区分雄蜂和工蜂。所达到的检测精度水平使创建一个高效的养蜂人自动系统成为可能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a49/11359591/4e046ed92eda/sensors-24-05389-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验