Department of Microbiology, The Ohio State University, Columbus, Ohio, USA.
Native BioData Consortium, Eagle Butte, South Dakota, USA.
mBio. 2024 Oct 16;15(10):e0206324. doi: 10.1128/mbio.02063-24. Epub 2024 Aug 29.
Host-associated microbiota form complex microbial communities that are increasingly associated with host behavior and disease. While these microbes include bacterial, archaeal, viral, and eukaryotic constituents, most studies have focused on bacteria due to their dominance in the human host and available tools for investigation. Accumulating evidence suggests microbial eukaryotes in the microbiome play pivotal roles in host health, but our understandings of these interactions are limited to a few readily identifiable taxa because of technical limitations in unbiased eukaryote exploration. Here, we combined cell sorting, optimized eukaryotic cell lysis, and shotgun sequencing to accelerate metagenomic discovery and analysis of host-associated microbial eukaryotes. Using synthetic communities with a 1% microbial eukaryote representation, the eukaryote-optimized cell lysis and DNA recovery method alone yielded a 38-fold increase in eukaryotic DNA. Automated sorting of eukaryotic cells from stool samples of healthy adults increased the number of microbial eukaryote reads in metagenomic pools by up to 28-fold compared to commercial kits. Read frequencies for identified fungi increased by 10,000× on average compared to the Human Microbiome Project and allowed for the identification of novel taxa, assembly of contigs from previously unknown microbial eukaryotes, and gene prediction from recovered genomic segments. These advances pave the way for the unbiased inclusion of microbial eukaryotes in deciphering determinants of health and disease in the host-associated microbiome.IMPORTANCEMicrobial eukaryotes are common constituents of the human gut where they can contribute to local ecology and host health, but they are often overlooked in microbiome studies. The lack of attention is due to current technical limitations that are heavily biased or poorly recovered DNA from microbial eukaryotes. We developed a method to increase the representation of these eukaryotes in metagenomic sequencing of microbiome samples that allows to improve their detection compared to prior methods and allows for the identification of new species. Application of the technique to gut microbiome samples improved detection of fungi, protists, and helminths. New eukaryotic taxa and their encoded genes could be identified by sequencing a small number of samples. This approach can improve the inclusion of eukaryotes into microbiome research.
宿主相关的微生物群落形成复杂的微生物群落,这些群落越来越与宿主的行为和疾病相关。虽然这些微生物包括细菌、古菌、病毒和真核生物,但由于它们在人类宿主中的主导地位和可用于研究的工具,大多数研究都集中在细菌上。越来越多的证据表明,微生物组中的微生物真核生物在宿主健康中起着关键作用,但由于在无偏真核生物探索方面的技术限制,我们对这些相互作用的理解仅限于少数易于识别的分类群。在这里,我们结合细胞分选、优化的真核细胞裂解和 shotgun 测序,加速了宿主相关微生物真核生物的宏基因组发现和分析。使用代表 1%微生物真核生物的合成群落,单独优化的真核细胞裂解和 DNA 回收方法可使真核 DNA 增加 38 倍。与商业试剂盒相比,从健康成年人的粪便样本中自动分选真核细胞可使宏基因组池中的微生物真核生物读数增加多达 28 倍。与人类微生物组计划相比,鉴定出的真菌的读取频率平均增加了 10,000 倍,并且能够鉴定新的分类群、组装来自以前未知微生物真核生物的 contigs 以及从回收的基因组片段中进行基因预测。这些进展为在宿主相关微生物组中阐明健康和疾病决定因素时,无偏地纳入微生物真核生物铺平了道路。
重要性:微生物真核生物是人类肠道的常见组成部分,它们可以促进局部生态和宿主健康,但在微生物组研究中经常被忽视。缺乏关注是由于当前的技术限制,这些限制严重偏向或无法从微生物真核生物中回收 DNA。我们开发了一种方法,可增加微生物组样本宏基因组测序中这些真核生物的代表性,与之前的方法相比,可提高它们的检测率,并允许鉴定新物种。该技术在肠道微生物组样本中的应用提高了真菌、原生动物和寄生虫的检测率。通过对少量样本进行测序,可以鉴定出新的真核生物分类群及其编码基因。这种方法可以提高真核生物在微生物组研究中的纳入率。
BMC Bioinformatics. 2024-3-29
Microbiome. 2017-11-25
BMC Bioinformatics. 2016-1-16
Curr Opin Genet Dev. 2025-7-18