Molecular Biology I, Center of Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, 45141 Essen, Germany.
Cellular Pathophysiology and Clinical Biochemistry, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, United Kingdom.
Proc Natl Acad Sci U S A. 2024 Sep 3;121(36):e2408787121. doi: 10.1073/pnas.2408787121. Epub 2024 Aug 29.
Protein phosphatase-1 catalytic subunit (PP1) joins diverse targeting subunits to form holophosphatases that regulate many cellular processes. Newly synthesized PP1 is known to be transiently sequestered in an inhibitory complex with Suppressor-of-Dis2-number-2 (SDS22) and Inhibitor-3 (I3), which is disassembled by the ATPases Associated with diverse cellular Activities plus (AAA+) protein p97. Here, we show that the SDS22-PP1-I3 complex also acts as a thermodynamic sink for mature PP1 and that cycles of SDS22-PP1-I3 formation and p97-driven disassembly regulate PP1 function and subunit exchange beyond PP1 biogenesis. Förster Resonance energy transfer (FRET) analysis of labeled proteins in vitro revealed that in the p97-mediated disassembly step, both SDS22 and I3 dissociate concomitantly, releasing PP1. In presence of a targeting subunit, for instance Growth Arrest and DNA Damage-inducible protein 34 (GADD34), liberated PP1 formed an active holophosphatase that dephosphorylated its substrate, eukaryotic translation initiation factor 2 alpha (eIF2α). Inhibition of p97 results in displacement of the GADD34 targeting subunit by rebinding of PP1 to SDS22 and I3 indicating that the SDS22-PP1-I3 complex is thermodynamically favored. Likewise, p97 inhibition in cells causes rapid sequestration of PP1 by free SDS22 and I3 at the expense of other subunits. This suggests that PP1 exists in a steady state maintained by spontaneous SDS22-PP1-I3 formation and adenosine triphosphate (ATP) hydrolysis, p97-driven disassembly that recycles active PP1 between different holophosphatase complexes to warrant a dynamic holophosphatase landscape.
蛋白磷酸酶-1 催化亚基 (PP1) 与多种靶向亚基结合形成全磷酸酶,调节许多细胞过程。新合成的 PP1 已知会与抑制因子 2 号(SDS22)和抑制剂-3(I3)的抑制复合物短暂结合,该复合物由 ATP 酶相关的多种细胞活动(AAA+)蛋白 p97 解聚。在这里,我们表明 SDS22-PP1-I3 复合物也是成熟 PP1 的热力学汇,并且 SDS22-PP1-I3 的形成和 p97 驱动的解聚循环调节 PP1 功能和亚基交换超出 PP1 生物发生。体外标记蛋白的荧光共振能量转移(FRET)分析表明,在 p97 介导的解聚步骤中,SDS22 和 I3 同时解离,释放 PP1。在存在靶向亚基的情况下,例如生长停滞和 DNA 损伤诱导蛋白 34(GADD34),释放的 PP1 形成了一种活性全磷酸酶,可使真核翻译起始因子 2α(eIF2α)去磷酸化。p97 的抑制导致 GADD34 靶向亚基被 PP1 与 SDS22 和 I3 的重新结合取代,表明 SDS22-PP1-I3 复合物在热力学上是有利的。同样,细胞中 p97 的抑制会导致游离的 SDS22 和 I3 迅速将 PP1 隔离,而牺牲其他亚基。这表明 PP1 处于由自发 SDS22-PP1-I3 形成和三磷酸腺苷(ATP)水解维持的稳定状态,p97 驱动的解聚使活性 PP1 在不同的全磷酸酶复合物之间循环,以保证动态的全磷酸酶景观。