Suppr超能文献

用于口腔溃疡分割的高阶焦点交互模型和口腔溃疡数据集。

A high-order focus interaction model and oral ulcer dataset for oral ulcer segmentation.

机构信息

Stomatological College, Nanjing Medical University, Nanjing, China.

School of Microelectronics, Shanghai University, Shanghai, China.

出版信息

Sci Rep. 2024 Aug 29;14(1):20085. doi: 10.1038/s41598-024-69125-9.

Abstract

Computer-aided diagnosis has been slow to develop in the field of oral ulcers. One of the major reasons for this is the lack of publicly available datasets. However, oral ulcers have cancerous lesions and their mortality rate is high. The ability to recognize oral ulcers at an early stage in a timely and effective manner is a very critical issue. In recent years, although there exists a small group of researchers working on these, the datasets are private. Therefore to address this challenge, in this paper a multi-tasking oral ulcer dataset (Autooral) containing two major tasks of lesion segmentation and classification is proposed and made publicly available. To the best of our knowledge, we are the first team to make publicly available an oral ulcer dataset with multi-tasking. In addition, we propose a novel modeling framework, HF-UNet, for segmenting oral ulcer lesion regions. Specifically, the proposed high-order focus interaction module (HFblock) performs acquisition of global properties and focus for acquisition of local properties through high-order attention. The proposed lesion localization module (LL-M) employs a novel hybrid sobel filter, which improves the recognition of ulcer edges. Experimental results on the proposed Autooral dataset show that our proposed HF-UNet segmentation of oral ulcers achieves a DSC value of about 0.80 and the inference memory occupies only 2029 MB. The proposed method guarantees a low running load while maintaining a high-performance segmentation capability. The proposed Autooral dataset and code are available from  https://github.com/wurenkai/HF-UNet-and-Autooral-dataset .

摘要

计算机辅助诊断在口腔溃疡领域的发展一直较为缓慢。其中一个主要原因是缺乏公开可用的数据集。然而,口腔溃疡存在癌性病变,其死亡率较高。能够及时有效地识别早期口腔溃疡是一个非常关键的问题。近年来,虽然有一小部分研究人员在研究这些问题,但数据集是私有的。因此,为了解决这一挑战,本文提出并公开了一个包含病变分割和分类两个主要任务的多任务性口腔溃疡数据集(Autooral)。据我们所知,我们是第一个公开提供具有多任务功能的口腔溃疡数据集的团队。此外,我们提出了一种新颖的建模框架 HF-UNet,用于分割口腔溃疡病变区域。具体来说,所提出的高阶焦点交互模块(HFblock)通过高阶注意力来实现全局属性的获取和局部属性的聚焦。所提出的病变定位模块(LL-M)采用了一种新颖的混合 Sobel 滤波器,提高了溃疡边缘的识别能力。在提出的 Autooral 数据集上的实验结果表明,我们提出的 HF-UNet 对口腔溃疡的分割达到了约 0.80 的 DSC 值,推理内存仅占用 2029MB。所提出的方法在保证低运行负载的同时,保持了高性能的分割能力。所提出的 Autooral 数据集和代码可在 https://github.com/wurenkai/HF-UNet-and-Autooral-dataset 上获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b586/11362486/f2ff9aa164a8/41598_2024_69125_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验